Complete tripartite graphs and their competition numbers

Jaromy Kuhl

Abstract

We present a piecewise formula for the competition numbers of the complete tripartite graphs. For positive integers x, y, and z where $2 \leq x \leq y \leq z$, the competition number of the complete tripartite graph $K_{x,y,z}$ is $yz - z - y - x + 3$ whenever $x \neq y$ and $yz - 2y - z + 4$ otherwise.

1 Introduction

In this note we consider competition graphs as introduced by Cohen in [1] and we consider a problem left open by Kim and Sano in [3]. Let D be a digraph with vertex set V and arc set A. If $u, v \in V$ have a common out-neighbor in D, then u and v are said to be in competition. The simple graph (V, E) in which edge set E is defined as

$$E = \{\{u, v\} : \text{u and v are in competition in } D\}$$

is called the competition graph of D and is denoted $C(D)$. Given the applicative nature of competition graphs (one example is that V represents a set of organisms in a food-web and competition is defined by organisms competing for food), it is important to ask which graphs are competition graphs of acyclic digraphs. In [8], Roberts observed that for any graph G and for a sufficiently large integer k, $G \cup I_k$ is the competition graph of an acyclic digraph, where I_k denotes the graph on k isolated vertices. The minimum such k is called the competition number of G. Formally, the competition number of G is

$$k(G) = \min\{k : G \cup I_k = C(D) \text{ in which } D \text{ is an acyclic digraph}\}.$$

In general, the problem of computing $k(G)$ is NP-hard [5]. So to reduce generality, G will belong to the class of complete multipartite graphs. The following theorems are what is currently known concerning the competition numbers of complete multipartite graphs.

*University of West Florida, Department of Mathematics and Statistics, Pensacola, Fl 32514; jkuhl@uwf.edu
Theorem 1.1 The competition number of the complete bipartite graph K_{n_1,n_2} is $n_1n_2 - n_1 - n_2 + 2$.

Theorem 1.1 is a corollary of the statement that if G is a triangle-free connected graph, then $k(G) = |E(G)| - |V(G)| + 2$. Recently, Kim and Sano [3] found the competition number of the complete tripartite graph $K_{n,n,n}$.

Theorem 1.2 The competition number $k(K^3_n)$ is $n^2 - 3n + 4$.

We extend Kim and Sano’s result to complete tripartite graphs in which the partite sets may not have equal size. We prove the following formula:

Theorem 1.3 For positive integers x, y and z where $2 \leq x \leq y \leq z$,

$$k(K_{x,y,z}) = \begin{cases}
yz - 2y - z + 4, & \text{if } x = y \\
yz - y - x + 3, & \text{if } x \neq y
\end{cases}$$

Some progress has been made on competition numbers of the complete tetrapartite graph K^4_n [4] and, more generally, the complete multipartite graph K^m_n [4].

Theorem 1.4 If $n \geq 5$ is odd, then

$$n^2 - 4n + 7 \leq k(K^4_n) \leq n^2 - 4n + 8.$$

Theorem 1.5 If n is prime and $m \leq n$, then

$$k(K^m_n) \leq n^2 - 2n + 3.$$

Park et al. [7] give bounds for the general case with respect to $L(n)$, the largest size of a family of mutually orthogonal latin squares of order n.

Theorem 1.6 If m and n are positive integers such that $3 \leq m \leq L(n) + 2$, then

$$k(K^m_n) \leq n^2 - n + 1.$$

For small values of n, Park et al. [6] found the following competition numbers.

Theorem 1.7 If $m \geq 2$, then $k(K^m_2) = 2$ and if $m \geq 3$, then $k(K^m_3) = 4$.

While we do not do so in this paper, it would be interesting to study the competition number of K_{n_1,n_2,n_3,n_4} since very little is currently known. Furthermore, there remains much to be known on computing the competition number $k(K^m_n)$.
2 Edge clique covers of $K_{x,y,z}$

Let $U = \{u_1, \ldots, u_x\}$, $V = \{v_1, \ldots, v_y\}$, and $W = \{w_1, \ldots, w_z\}$ be the vertex partition sets of $K_{x,y,z}$ where $2 \leq x \leq y \leq z$. We use $\Delta(i,j,k)$ to denote the clique induced on the vertex set $\{u_i, v_j, w_k\}$ and we use $\Delta(j,k)$ to denote the clique induced on the vertex set $\{v_j, w_k\}$. Note that a clique of order 3 is the largest clique in $K_{x,y,z}$.

Competition numbers can be computed by first finding a minimal edge clique cover. Let $\mathcal{S} = \{S_1, \ldots, S_m\}$ be a family of cliques in a graph G; i.e. the subgraph induced on $S_i \subseteq V(G)$ is complete for each $i \in [m]$. The family \mathcal{S} is called an edge clique cover of G provided $\{u,v\} \in E(G)$ if and only if $\{u,v\} \subseteq S_i$ for some $i \in [m]$. The edge clique cover number of G, denoted $\theta_e(G)$, is

$$\theta_e(G) = \min\{|\mathcal{S}| : \mathcal{S} \text{ is an edge clique cover of } G\}.$$

Certainly, for any graph G, $k(G) \leq \theta_e(G)$. Indeed, if $\theta_e(G) = k$, then each vertex of a clique in G can be directed to a vertex of I_k in the digraph D.

We find a minimal edge clique cover of $K_{x,y,z}$ using r-semi latin squares. An r-semi latin square of order n is an $n \times n$ array such that each element (or symbol) from the set $S = \{s_1, s_2, \ldots, s_n\}$ appears in each row and each column, and each cell contains r elements. If we label the rows and columns with sets $R = \{r_1, r_2, \ldots, r_n\}$ and $C = \{c_1, c_2, \ldots, c_n\}$ respectively, we may think of an r-semi latin square as a set of ordered triples (r_i, c_j, s_k), where symbol s_k appears at the intersection of row r_i and column c_j. Where convenient, we use the notation $c_j \circ s_k$ to denote the row containing symbol s_k in column c_j.

Henceforth q and r are positive integers such that $z = qy + r$, where $0 \leq r < y$. Let L be a $(q+1)$-semi latin square of order y on the symbol set $S = \{s_1, \ldots, s_{(q+1)y}\}$. Furthermore, let $R' = \{r'_1, \ldots, r'_x\} \subseteq R$ be a set of x rows and let $S' = \{s'_1, \ldots, s'_z\} \subseteq S$ be a set of z symbols. We use

$$L(R', C, S') = \{(r'_i, c_j, s'_k) : (r'_i, c_j, s'_k) \in L, r'_i \in R', s'_k \in S'\}$$

to denote the $x \times y$ array on symbol set S' induced by the intersection of rows R' and columns C. Note that the family \mathcal{F}, defined below, is a subset of an edge clique cover of $K_{x,y,z}$. In fact, we will later show that \mathcal{F} is a minimal edge clique cover of $K_{x,y,z}$.

$$\mathcal{F} = \{\Delta(i,j,k) : (r'_i, c_j, s'_k) \in L(R', C, S')\} \cup$$

$$\{\Delta(j,k) : (c_j \circ s_k, c_j, s_k) \in L(R \setminus R', C, S')\} \quad (1)$$

For an example of (1), consider $K_{2,4,6}$. Since $z = 6$ and $y = 4$, $q = 1$. We use the following 2-semi latin square of order 4 as L and set $R' = \{r_1, r_4\}$ and $S' = \{s_1, \ldots, s_6\}$, where $r'_1 = r_1$, $r'_2 = r_4$ and $s'_i = s_i = i$ for $1 \leq i \leq 6$.

Then the rectangular array $L(R', C, S')$ is

\[
\begin{array}{cccc}
1,2 & 4,5 & 3,7 & 6,8 \\
5,6 & 7,8 & 1,2 & 3,4 \\
7,8 & 2,3 & 4,6 & 1,5 \\
3,4 & 1,6 & 5,8 & 2,7 \\
\end{array}
\]

The clique $\Delta(1, 1, 2)$ is included in \mathcal{F} since \((r'_{11}, c_1, s'_2) \in L(R', C, S')\). The same can be said of $\Delta(2, 1, 3)$ since \((r'_{21}, c_1, s'_3) \in L(R', C, S')\). Also, since \((r_2, c_1, s'_5) \in L(R \setminus R', C, S')\), $\Delta(1, 5) \in \mathcal{F}$. The remaining members of \mathcal{F} are given in the following family;

\[
\mathcal{F} = \{\Delta(1, 1, 1), \Delta(1, 1, 2), \Delta(1, 2, 4), \Delta(1, 2, 5), \Delta(1, 3, 3), \Delta(1, 4, 6), \\
\Delta(2, 1, 3), \Delta(2, 1, 4), \Delta(2, 2, 1), \Delta(2, 2, 6), \Delta(2, 3, 5), \Delta(2, 4, 2), \\
\Delta(1, 5), \Delta(1, 6), \Delta(3, 1), \Delta(3, 2), \Delta(4, 3), \Delta(4, 4), \Delta(2, 2), \\
\Delta(2, 3), \Delta(3, 4), \Delta(3, 6), \Delta(4, 1), \Delta(4, 5)\}
\]

Lemma 2.1 The family \mathcal{F} is an edge clique cover of $K_{x,y,z}$. Moreover, \mathcal{F} is minimal and $\theta_e(K_{x,y,z}) = yz$.

Proof: First, we show that \mathcal{F} is an edge clique cover of $K_{x,y,z}$. Let $R' = \{r'_{11}, \ldots, r'_{z} \} \subseteq R$ be a set of x rows and let $S' = \{s'_1, \ldots, s'_z\}$ be a set of z symbols in a $(q+1)$-semi latin square L of order y. Consider the edge $e = \{u_i, v_j\}$ in $K_{x,y,z}$, $i \in [x]$ and $j \in [y]$. Let $S_{i,j}$ denote the set of $q + 1$ symbols at the intersection of r'_i and c_j. If $S_{i,j} \cap S' = \emptyset$, then $q + 1 \leq q - r$, a contradiction as $r \geq 0$. Therefore there is an integer k such that \((r'_i, c_j, s'_k) \in L(R', C, S')\). Thus the clique $\Delta(i, j, k) \in \mathcal{F}$ covers the edge e.

Now set $e = \{u_i, w_j\}$, $i \in [x]$ and $j \in [z]$. Since each symbol of S' appears in each row of $L(R', C, S')$, there is an integer k such that \((r'_i, c_k, s'_j) \in L(R', C, S')\). Hence $\Delta(i, k, j) \in \mathcal{F}$ covers e. Finally, set $e = \{v_i, w_j\}$, $i \in [y]$ and $j \in [z]$. There is an integer $k \in [y]$ so that $r_k = c_i \circ s'_j$. If $r_k \in R'$, then certainly e is covered by a clique of order three in \mathcal{F}. Otherwise $r_k \in R \setminus R'$ and $\Delta(i, j)$ covers e.

We finish the proof by showing that yz is a lower and upper bound for $\theta_e(K_{x,y,z})$. Note that there are yz edges of the form $\{v, w\}$ where $v \in V$ and $w \in W$. Furthermore, there is no clique in $K_{x,y,z}$ that contains two edges of the form $\{v, w\}$. It follows that at least yz cliques are needed to cover the edges that contain end vertices in partitions V and W. Hence $\theta_e(K_{x,y,z}) \geq yz$. To show that yz is an upper bound for $\theta_e(K_{x,y,z})$, we need only to provide an edge clique cover of $K_{x,y,z}$ whose cardinality is yz. From above, \mathcal{F} is an edge clique cover of $K_{x,y,z}$. Since L contains precisely $y^2(q + 1)$ triples and since symbols from $S \setminus S'$ appear precisely y times in L, \mathcal{F} is made of

\[
y^2(q + 1) - y(y(q + 1) - z) = yz
\]
triples. Hence \(\theta_e(K_{x,y,z}) \leq yz \). Moreover, this shows that \(\mathcal{F} \) is a minimal edge clique cover of \(K_{x,y,z} \).

To end this section we comment on a general minimal edge clique cover of \(K_{x,y,z} \) when \(x = y \).

Lemma 2.2 Let \(S \) be a minimal edge clique cover of \(K_{y,y,z} \) and let \(S, S' \in S \). If \(|S \cap S'| = 2 \), then \(S = \{u, v, w\} \) and \(S' = \{u, v, w'\} \) where \(u \in U \), \(v \in V \) and \(w, w' \in W \).

Proof: We may assume that \(|S| = 3 \) for each \(S \in S \). Let \(S, S' \in S \) such that \(|S \cap S'| = 2 \).

Since \(|S| = yz \) (by Lemma 2.1) and since no clique contains two edges of the form \(\{v, w\} \), no two cliques of \(S \) share an edge of the form \(\{v, w\} \) where \(v \in V \) and \(w \in W \). Similarly, no two cliques share an edge of the form \(\{u, w\} \) where \(u \in U \) and \(w \in W \). Hence \((S \cup S') \setminus (S \cap S') \subseteq W \). \(\square \)

3 Proof of main result

The following characterization of competition graphs [2] is used to show a lower bound for \(k(K_{x,y,z}) \).

Theorem 3.1 A graph \(G \) is the competition graph of an acyclic digraph if and only if there exists an ordering \(a_1, \ldots, a_n \) of the vertices of \(G \) and an edge clique cover \(\{S_1, \ldots, S_n\} \) of \(G \) such that if \(a_i \in S_j \), then \(i < j \).

An equivalent way of stating Theorem 3.1 is to say that there exists an ordering \(a_1, \ldots, a_n \) of the vertices of \(G \) and an edge clique cover \(\{S_1, \ldots, S_n\} \) of \(G \) such that \(S_i \subseteq \{a_1, \ldots, a_{i-1}\} \) for each \(i \).

Theorem 3.2 For integers \(x, y \) and \(z \) where \(2 \leq x \leq y \leq z \),

\[
k(K_{x,y,z}) \geq yz - z - y - x + 3.
\]

Moreover, if \(x = y \), then

\[
k(K_{y,y,z}) \geq yz - 2y - z + 4.
\]

Proof: Let \(k = k(K_{x,y,z}) \) and let \(D \) denote an acyclic digraph such that \(C(D) = K_{x,y,z} \cup I_k \). Note that \(S \) is an edge clique cover of \(K_{x,y,z} \) if and only if \(S \) is an edge clique cover of \(K_{x,y,z} \cup I_k \). Then, from Theorem 3.1, there is an ordering \(a_1, \ldots, a_{x+y+z+k} \) of the vertices of \(K_{x,y,z} \cup I_k \) and an edge clique cover \(S = \{S_1, \ldots, S_{x+y+z+k}\} \) of \(K_{x,y,z} \) such that \(S_i \subseteq \{a_1, \ldots, a_{i-1}\} \) for each \(i \). We may assume that the order of each non empty clique in \(S \) is three. Then \(S_1 = S_2 = S_3 = \emptyset \) and so, by Lemma 2.1, \(|S \setminus \{S_1, S_2, S_3\}| \geq yz \). Hence \(x + y + z + k - 3 \geq yz \) and so \(k \geq yz - x - y - z + 3 \).
Suppose now that \(x = y \) and that, for the sake of contradiction, \(k = yz - 2y - z + 3 \). Then \(S_i \) is non empty for each \(i \geq 4 \), \(S_4 = \{a_1, a_2, a_3\} \) and \(S_5 \subseteq \{a_1, a_2, a_3, a_4\} \). So it must be that \(|S_4 \cap S_5| = 2 \). Without loss of generality, assume that \(S_5 = \{a_2, a_3, a_4\} \). By Lemma 2.2, \(a_1, a_4 \in W \). Let \(l \geq 4 \) be the largest integer such that \(S_{l+1} = \{a_2, a_3, a_4\} \) and \(a_l \in W \). Then \(S_{l+2} = \{a_2, a_j, a_{l+1}\} \) or \(S_{l+2} = \{a_3, a_j, a_{l+1}\} \), \(j \in [l] \setminus \{2, 3\} \). In either case \(|S_{l+2} \cap S_1| = 2 \) or \(|S_{l+2} \cap S_{l+1}| = 2 \). But \(a_{l+1} \in U \cup V \), contradicting Lemma 2.2. Hence \(k \geq yz - 2y - z + 4 \). \(\square \)

We now proceed to the main result. Henceforth \(L \) is a \((q+1)\)-semi latin square of order \(y \) such that \((r_i, c_j, s_k) \in L\) if and only if \(i + j - 1 \equiv k \mod y \). Furthermore, we set \(R' = \{r_1, \ldots, r_{x-1}, r_y\} \) and \(S' = \{s_1, \ldots, s_z\} \) where \(r'_i = r_i \) for \(i \in [x-1] \), \(r'_x = r_y \) and \(s'_i = s_i \) for \(i \in [z] \). For \(y = 5 \) and \(z = 13 \), the arrays below are \(L \) and \(L(R', C, S') \) respectively.

<table>
<thead>
<tr>
<th>1,6,11</th>
<th>2,7,12</th>
<th>3,8,13</th>
<th>4,9,14</th>
<th>5,10,15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,7,12</td>
<td>3,8,13</td>
<td>4,9,14</td>
<td>5,10,15</td>
<td>1,6,11</td>
</tr>
<tr>
<td>3,8,13</td>
<td>4,9,14</td>
<td>5,10,15</td>
<td>1,6,11</td>
<td>2,7,12</td>
</tr>
<tr>
<td>4,9,14</td>
<td>5,10,15</td>
<td>1,6,11</td>
<td>2,7,12</td>
<td>3,8,13</td>
</tr>
<tr>
<td>5,10,15</td>
<td>1,6,11</td>
<td>2,7,12</td>
<td>3,8,13</td>
<td>4,9,14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,6,11</th>
<th>2,7,12</th>
<th>3,8,13</th>
<th>4,9</th>
<th>5,10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,7,12</td>
<td>3,8,13</td>
<td>4,9</td>
<td>5,10</td>
<td>1,6,11</td>
</tr>
<tr>
<td>5,10</td>
<td>1,6,11</td>
<td>2,7,12</td>
<td>3,8,13</td>
<td>4,9</td>
</tr>
</tbody>
</table>

Proof of Theorem 1.3. Case 1: \(x = y \).

In this case \(r'_i = r_i \) for each \(i \). We first order the vertices \(a_1, \ldots, a_{2y+z} \) of \(K_{y,y,z} \) as

\[
\begin{align*}
&u_1, v_1, w_1, u_2, v_y, w_y, u_y, v_2, w_2, u_{y-1}, v_{y-1}, w_{y-1}, \ldots, u_3, v_3, w_3, w_{y+1}, \ldots, w_z.
\end{align*}
\]

Note that all vertices of \(K_{y,y,z} \) appear in the vertex ordering. Next, we order \(2y + z - 3 \) cliques of \(F \) in the following way. The first 6 cliques are ordered as

\[
\begin{align*}
\Delta_1 &= \{u_1, v_1, w_1\}, \\
\Delta_2 &= \{u_2, v_y, w_1\}, \\
\Delta_3 &= \{u_1, v_y, w_y\}, \\
\Delta_4 &= \{u_y, v_1, w_y\}, \\
\Delta_5 &= \{u_y, v_2, w_1\}, \\
\Delta_6 &= \{u_1, v_2, w_2\}
\end{align*}
\]

For \(0 \leq s \leq y - 4 \), the next \(3y - 9 \) cliques are given as

\[
\begin{align*}
\Delta_{3s+7} &= \{u_{y-s-1}, v_2, w_{y-s}\}, \\
\Delta_{3s+8} &= \{u_2, v_{y-s-1}, w_{y-s}\}, \text{ and} \\
\Delta_{3s+9} &= \{u_1, v_{y-s-1}, w_{y-s-1}\}.
\end{align*}
\]
Finally, for $0 \leq s \leq z - y - 1$, the remaining $z - y$ cliques are
\[\Delta_{3y-2+s} = \{u, v, w_{y+s+1}\}, \]
where $u \in U$ and $v \in V$ are any vertices such that $\{u, v, w_{y+s+1}\} \in \mathcal{F}$.

Given the vertex and clique orderings above, we construct a digraph that shows that $yz - 2y - z + 4$ is an upper bound for $k(K_{y,y,z})$. We must first note that
\[\Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_i \subseteq \{a_1, a_2, \ldots, a_{i+3}\} \tag{2} \]
for $i \in [2y + z - 3]$. This follows from the fact that $\Delta_1 = \{a_1, a_2, a_3\}$, $\Delta_2 \setminus \Delta_1 = \{a_4, a_5\}$ and $\Delta_i \setminus (\Delta_1 \cup \ldots \cup \Delta_{i-1}) = \{a_i, a_{i+3}\}$, where $3 \leq i \leq 2y + z - 3$.

Since \mathcal{F} is a minimal edge clique cover, there are $yz - 2y - z + 3$ cliques in $\mathcal{F} \setminus \{\Delta_1, \ldots, \Delta_{2y+z-3}\}$. Set $\mathcal{F} \setminus \{\Delta_1, \ldots, \Delta_{2y+z-3}\} = \{T_1, \ldots, T_{yz-2y-z+3}\}$. Let D be the digraph with the following vertex set V and arc set A:
\[
V(D) = \{a_1, \ldots, a_{z+2y-3}\} \cup \{\alpha_0, \ldots, \alpha_{yz-2y-z+3}\}
\]
\[
A(D) = \bigcup_{i=1}^{2y+z-4} \{(\delta, a_{i+4}) : \delta \in \Delta_i\} \cup \{(\delta, \alpha_0) : \delta \in \Delta_{2y+z-3}\} \cup
\bigcup_{i=1}^{yz-2y-z+3} \{(\delta, \alpha_i) : \delta \in T_i\}.
\]

From statement (2), the digraph D is acyclic. Because every clique in \mathcal{F} has a common out-neighbor in D, $E(C(D)) \subseteq E(K_{y,y,z})$. Moreover, the in-neighborhood of a vertex of D is a clique in \mathcal{F}. Therefore $E(K_{y,y,z}) \subseteq E(K_{y,y,z})$. It follows that $C(D) = K_{y,y,z} \cup I_{yz-2y-z+4}$. Hence, by Theorem 3.2,
\[k(K_{y,y,z}) = yz - 2y - z + 4. \]

Case 2: $x < y$.

In this case $r'_i = r_i$ for each $i \in [x-1]$ and $r'_x = r_y$. As in the previous case, we begin by ordering vertices and cliques in $K_{x,y,z}$. The vertex ordering a_1, \ldots, a_{x+y+z} of $K_{x,y,z}$ is
\[
u, v_1, w_y, v_2, w, u_1, w_2, u_2, v_y, w_{y-1}, v_{y-1}, \ldots, w_x, v_x,
\]
\[
u, v_{x-1}, w_{x-1}, \ldots, u_3, v_3, w_3, w_{y+1}, \ldots, w_z.
\]
Next, we order $x + y + z - 2$ cliques of \mathcal{F}. The first 7 cliques are ordered as
\[
\Delta_1 = \{u_x, v_1, w_y\}, \quad \Delta_2 = \{v_2, w_y\}, \quad \Delta_3 = \{u_x, v_2, u_1\},
\]
\[
\Delta_4 = \{u_1, v_1, w_1\}, \quad \Delta_5 = \{u_1, v_2, u_2\}, \quad \Delta_6 = \{u_2, v_1, w_2\}, \quad \Delta_7 = \{u_2, v_y, w_1\}
\]
For $0 \leq s \leq y - x - 1$, the next $2(y - x)$ cliques in the ordering are given as
\[
\Delta_{2s+8} = \{u_x, v_{y-s}, w_{y-s-1}\}, \quad \text{and} \quad \Delta_{2s+9} = \{u_1, v_{y-s-1}, w_{y-s-1}\}.
\]
For $0 \leq s \leq x - 4$, the next $3x - 9$ cliques are given as

\[
\Delta_{3s+2(y-x)+8} = \{u_{x-s-1}, v_2, w_{x-s}\}, \\
\Delta_{3s+2(y-x)+9} = \{u_2, v_{x-s-1}, w_{x-s}\}, \text{ and} \\
\Delta_{3s+2(y-x)+10} = \{u_1, v_{x-s-1}, w_{x-s-1}\}.
\]

Finally, for $0 \leq s \leq z - y - 1$, the remaining $z - y$ cliques in the ordering are

\[
\Delta_{2y+x-1+s} = \{u, v, w_{y+s+1}\},
\]

where $u \in U$ and $v \in V$ are any vertices such that \(\{u, v, w_{y+s+1}\} \in \mathcal{F}\).

In this case note that

\[
\Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_i \subseteq \{a_1, a_2, \ldots, a_{i+2}\}
\]

for $i \in [z + y + x - 4]$. Set \(\mathcal{F}' \setminus \{\Delta_1, \ldots, \Delta_{z+y+x-4}\} = \{T_1, \ldots, T_{yz-z-y-x+4}\}\). Let D be the digraph with the following vertex set V and arc set A:

\[
V(D) = \{a_1, \ldots, a_{z+y+x-4}\} \cup \{a_0, \ldots, a_{yz-z-y-x+2}\}
\]

\[
A(D) = \bigcup_{i=1}^{z+y+x-3} \{(\delta, a_{i+3}) : \delta \in \Delta_i\} \cup \{(\delta, a_0) : \delta \in \Delta_{z+y+x-4}\} \cup \bigcup_{i=1}^{yz-z-y-x+2} \{(\delta, a_i) : \delta \in T_i\}.
\]

It follows from statement (3) that D is acyclic. Furthermore $C(D) = K_{x,y,z} \cup I_{yz-z-y-x+3}$. Hence, by Theorem 3.2,

\[
k(K_{x,y,z}) = yz - z - y - x + 3.
\]

References

