FINAL REPORT: Pre-Reefing Environmental Assessment for the *ex-ORISKANY*

Prepared by

Richard A. Snyder, William F. Patterson III, Suzanne Gibson, Sarah Jeffers, Alexander Ren

Center for Environmental Diagnostics and Bioremediation

and

Department of Biology

University of West Florida 11000 University Parkway Pensacola, Florida 32514

http://www.uwf.edu/cedb/ 850-474-2060

26 January 2007

Table of Contents

	<u>Page #</u>
List of Tables	
List of Figures	4
Executive Summary	5
Goal	6
Background	6
PCBs in the Gulf of Mexico	6
PCBs in Pensacola Bay	
PCBs on the ex Oriskany	
Artificial Reefs and Fisheries in the Gulf of Mexico	
Study Area	
Materials and Methods	
Sediments	
Water Column Particulates	13
Fish and Invertebrate Samples	13
Fish Age Estimation	17
Fish Gut Content Analysis	17
Elemental and Stable Isotope Analysis	18
PCB Analysis	19
Results and Discussion	19
Sediments	19
Water Column Particulates	26
Fish and Invertebrate Samples	28
Fish Gut Content Analysis	28
Elemental and Stable Isotope Analysis	28
Fish Age Estimation	28
Fish and Invertebrate PCB Analysis	41
References Cited	56
Acknowledgements	59

List of Tables

Table	Page #
1. Biota PCB body burdens reported from the Gulf of Mexico in previous studies	7
2. Locations of sediment grab samples	11
3. Locations and quantities of water column particulate samples	13
4. Fish and invertebrate sample collection data	15
5. Carbonate and percent phosphorous content of sediment samples	19
6. Particle size analysis of sediment samples	20
7. Results of elemental and stable isotope analysis of sediment organic matter	22
8. TEQs, the sum of all PCBS, and the Percent Lipids in sediment samples	24
9. Precision estimates for sediment PCB analysis	24
10. Results of elemental and stable isotope analysis of water column particulates	25
11. PCB content in water column particulates	26
12. Synopsis of fish and invertebrate samples collected for PCB analysis	28-29
13. Results of diet analysis for fish composites	36
14. Results of IR-MS analysis of stable isotope standard reference material	37
15. Results of duplicate analysis of fish and invertebrate tissue samples	37
16. Results of IR-MS analysis of fish and invertebrate tissue samples.	38
17. Precision estimates for tissue PCB analysis	41
18. Tissue sample characteristics and PCB contents.	42
19. Correlation matrix of variables measured in all fishes and invertebrates	45
20. Correlation matrix of variables measured in fishes and invertebrates	
excluding King Mackerel	45
21. Correlation matrix of variables measured in all reef fishes	46
22. Correlation matrix of variables measured in all non-reef fishes	46
23. Correlation matrix of variables measured in grouper species	47
24. Correlation matrix of variables measured in snapper species	47
25. Correlation matrix of variables measured in red snapper	48

List of Figures

Figure	Page #
1. PCB body burdens in Grouper reported from the Gulf of Mexico, Florida Keys	
and Bahamas in a previous study	7
2. Shipek grab sampler for sediments and filtration manifolds for particulates	10
3. Location of sediment sampling stations with respect to the ex-Oriskany reefing site	12
4. Locations of fish and invertebrate sample collections relative to the	
ex-Oriskany reefing site	16
5. Otolith age estimation.	17
6. Sediment samples from the vicinity of the reefing site	20
7. Benthic microfauna in sediments from the reefing site	21
8. Carbon, Nitrogen, and Sulfur content and stable isotope ratios of the sediments	23
9. Polychlorinated biphenyl (PCB) content of the sediments	25
10. Results of elemental and stable isotope analysis of water column particulates	27
11. Sampling locations for species analyzed for PCB tissue concentrations	30-35
12. Plots of stable isotope ratio data for reef fishes	39
13. Plots of stable isotope ratio data for non-reef fishes and invertebrates	40
14. Percent composition of total PCBs by homologs in fish and invertebrate tissues	43
15. Plots of PCB body burdens in all fish and invertebrate samples	49
16. Plots of PCB body burdens in reef fish samples	51
17. Plots of PCB body burdens in non-reef fish samples	49
18. Plots of PCB body burdens in grouper samples	52
19. Plots of PCB body burdens in snapper samples	53
20. Fish and Invertebrate PCB data plotted by latitude	55

Executive Summary

The University of West Florida (UWF) conducted a study to examine the distribution and concentration of polychlorinated biphenyls (PCBs) in sediments and key biota on the offshore northern Gulf of Mexico (Gulf) continental shelf off Pensacola, Florida. The purpose of the study was to establish a baseline dataset for comparison of future samples collected from the *ex-Oriskany* aircraft carrier that was sunk as an artificial reef off Pensacola, Florida in May 2006. The sinking of the ex-Oriskany continued a trend in which the northern Gulf has been the most active region in the U.S. in terms of artificial reef creation. In general, goals of reef creation have been 1) enhancing production of reef-dependent invertebrate or fish species; 2) aggregating individuals to increase fishing efficiency; 3) providing divers with increased opportunity to view reef-associated organisms; and, 4) economical disposal of petroleum platforms and ships. In the northern Gulf, a significant percentage of recreational and commercial reef fish landings come from artificial reefs. Therefore, concerns exist about the potential risk that PCBs still onboard the ex-Oriskany will enter the marine foodweb and bioaccumulate in exploited fishes.

The focal point for this study was the *ex-Oriskany* reefing site in the southeast corner of the Escambia East Large Area Artificial Reef Site. Sediments, water column particulates, and biota were sampled in the vicinity of the reefing site and across the shelf. Sampling and analysis followed established standard procedures for each matrix.

Polychlorinated biphenyl content of offshore sediments and water column particulate material was consistently low and below detection limits for most congeners. Several samples of offshore fishes had elevated PCB concentrations. Two samples exceeded the total PCB screening value of 20 μ g kg⁻¹ (US EPA, 2000), a king mackerel at 92.1 μ g kg⁻¹ and a gag grouper at 22.6 μ g kg⁻¹ (values were based on wet weight of skin off fillets). The TEQ screening value for Dioxin-like activity (0.26 ng kg⁻¹; US EPA, 2000) was exceeded by four samples, including the above two fish at 2.31 and 0.47 respectively, and an amberjack at 0.29, and a red grouper at 0.47. The extremely high levels measured in the king mackerel are a cause for concern, and may indicate transport of PCBs from inshore to offshore habitats

Analysis of reef fishes indicated fish length and mass were significantly correlated with PCB concentration. PCB concentration also was significantly but weakly correlated with $\delta^{15}N$, and $\delta^{13}C$. Analysis for all snapper species indicated a relatively strong correlation between trophic position (inferred from $\delta^{15}N$ value) and PCB concentration. Trophic position increased with size/age, which in turn was significantly correlated with PCB concentration, thus indicating bioaccumulation with age.

Overall, levels of PCBs in the biota of the shelf ecosystem were below thresholds of concern for toxicity. However, future comparison work on any effects of PCBs from the sinking of the *ex-Oriskany* should focus on those species that do not include the inshore estuarine habitats as part of their life cycle due to the potential for PCBs from Pensacola Bay to bioaccumulate in muscle tissue of estuarine-dependent reef fishes prior to recruitment to the offshore reefs.

Goal

The University of West Florida (UWF) conducted a study to establish a baseline database of polychlorinated biphenyl (PCB) distribution in sediments and key biota on the nearshore northern Gulf of Mexico continental shelf off Pensacola, Florida. Samples collected and analyzed in this work were obtained prior to the sinking of the *ex-Oriskany* as an artificial reef 25 miles south of Pensacola Bay pass, Florida on 17 May 2006 (Currents, 2006) so subsequent monitoring work may determine any impacts of PCBs potentially released from the reef.

Background

PCBs in the Gulf of Mexico

Studies on persistent inorganic and organic pollutants in the Gulf of Mexico have focused mainly on coastal systems (Kennicutt et al., 1988). Mercury is the only toxicant that has received attention in Florida marine fisheries from a public health perspective. Work has been conducted by EPA (EMAP) and NOAA (Wade et al., 1988) in Gulf estuaries, documenting widespread contamination by trace metals and persistent organics, including PCBs, associated with human activity. The National Oceanographic and Atmospheric Administration (NOAA) also recently tested some organisms in Mississippi Sound as a result of public concern for offshore pollutant transport from hurricane Katrina flooding, and generally found levels of contaminants to be below levels of concern (Krahn et al., 2005).

Despite the lack of attention paid to PCBs along the Gulf Coast, they are of particular concern because of their toxicological effects and their ability to accumulate in biota. Bioaccumulation is manifested as increased body burdens with age and trophic level. Recent work in San Francisco Bay has resulted in a fish consumption advisory for PCB body burdens in top level predatory fish, despite a comprehensive analysis of sediments indicating few areas for concern (http://www.epa.gov/region9/water/dioxin/sfbay.html). Data on Bottlenose dolphins (*Tursiops truncatus*) in the Gulf of Mexico also are instructive in this regard. Males accumulated high concentrations of PCBs in blubber with age (>100 ppm), while females showed much lower and relatively stable levels as a result of depuration by birth of offspring and lactation (<15 ppm; Wells et al., 2005).

Along the northern Gulf Coast, PCBs have been reported from loggerhead turtles (Alam and Bim., 2000), bottlenose dolphins (Johnson-Restrepo et al., 2005; Salata et al., 1995; Watanabe et al., 2000; Wells et al., 2005), and bony and cartilaginous fishes in coastal waters (Geleichter et al., 2005; Johnson-Restrepo et al., 2005; Karouna-Reiner et al., 2007a,b), thus indicating connectivity between estuarine and offshore food webs may serve as a conduit for translocating contaminants, including PCBs, offshore. Analysis of PCBs in other biota in northern Gulf of Mexico offshore environments has been limited and mostly dates to the 1970s. Taxa analyzed include benthic invertebrates (rock shrimp), net plankton (>200 μ m), and relatively few fishes (Table 1). Analysis conducted on groupers showed elevated levels in Gulf waters (Figure 1; Giam et al., 1974) It should be noted that quantification of PCBs as Aroclors, as was done in these earlier studies, has been shown to underestimate total PCBs by as much as five fold (Connor et al., 2005).

Table 1. Biota PCB body burdens (µg kg	¹) reported from the northern Gulf of Mexico in
previous studies.	

Species	Location	Wet Mass	Lipid	Reference	Notes
	Off Pensacola				quantified as
Rock Shrimp	(30 00.5'; 87 17.5')	6		Giam et al., 1972.	aroclor 1260
	Off Pensacola				quantified as
Net Plankton	(30 00.5'; 87 17.5')	157		Giam et al., 1973	aroclor 1260
	Off Cape San Blas				quantified as
Net Plankton	(29 19.5'; 83 28.0')	1055		Giam et al., 1973	aroclor 1254
	Off Pensacola				quantified as
Plankton	(29 19'; 87 01')	0.1	112.359	Baird et al., 1975	aroclor 1254
		0.033,	12.027,		
	Off Pensacola	0.158,	4.313,		quantified as
Mesopelagic fish	(29 19'; 87 01')	0.040	3.418	Baird et al., 1975	aroclor 1254
	Off Pensacola				quantified as
Plankton	(29 26'; 87 17')	0.157	19.087	Baird et al., 1975	aroclor 1254
					quantified as
Grouper	18 samples GOM	33		Giam et al., 1974	aroclor 1260
	SE of Chandeleur			Krahn et al.,	Sum of PCBs
Atlantic Croaker	Islands, LA	25±29		2005	±SD
	SE of Chandeleur			Krahn et al.,	Sum of PCBs
Bigeye Tuna	Islands, LA	15 ± 8.8		2005	±SD

Figure 1. PCB body burdens in groupers reported by Giam et al. (1974) from the Gulf of Mexico, Florida Keys, and Bahamas. The only sample close to the northeastern Gulf of Mexico is the Flower Gardens, which is likely impacted by coastal Louisiana and Texas.

PCBS in Pensacola Bay

The Center for Environmental Diagnostics and Bioremediation (CEDB) at the UWF has been engaged in a study of fish and shellfish tissue loads in the Pensacola Bay estuarine system. PCB contamination in the system originates from industrialized areas of the Bay (Lewis et al., 2001, 2002) but predominantly from a spill documented in 1969 in the Escambia river (Duke et al., 1970; Karouna-Renier et al., 2007a,b; Nimmo et al., 1975; Oliver et al., 2001). Among other fishes, high levels of PCBs have been recorded in mullet, croaker, and red drum, which make annual spawning runs into the Gulf of Mexico thus raising concern about inshore to offshore transport of PCBs (Karouna-Renier et al., 2007a,b; Snyder et al., unpublished data).

PCBs on the ex-Oriskany

The goal of this investigation was to establish a baseline of PCB content and distribution in various partitions of the offshore environment so any impact of PCBs from the sinking of the *ex-Oriskany* as an artificial reef might be assessed. PCBs remaining on the ship, as well as their potential leach rates into the environment have been investigated and reported (George et al., 2006). Other documents pertaining to PCBs and the *ex-Oriskany* reef, including modeling of potential environmental and human health impacts can be found on the US EPA server: http://www.epa.gov/Region4/air/lead/PCBWebPage.htm

Artificial Reefs and Fisheries in the Gulf of Mexico

The northern Gulf of Mexico has been the most active region in the U.S. in terms of artificial reef creation. Reefs consisting of a variety of materials have been deployed in Gulf waters since World War II for myriad purposes (Bohnsack and Sutherland, 1985; Minton and Heath, 1998; Stone, 1986). In general, goals of reef creation have been 1) enhancing production of reef-dependent invertebrate or fish species; 2) aggregating individuals to increase fishing efficiency; 3) providing divers with increased opportunity to view reef-associated organisms; and, 4) economical disposal of petroleum platforms and ships no longer in service (Baine, 2001; Kasperzack, 1998; Okechi and Polovina, 1995; Seaman, 2000). Perhaps the single most cited reason for reef creation has been increasing fishing opportunities or efficiency on the Gulf's inner (i.e., < 25 miles offshore) continental shelf. For example, since 1995 nearly 60% of the Gulf's recreational red snapper harvest has come from Alabama and the Panhandle of Florida, areas where reef fishes are predominantly targeted over artificial reefs (Minton and Heath, 1998; Shipp, 1999).

Study Area

The site where the *ex-Oriskany* was sunk is in the southeast corner of the Escambia East Large Area Artificial Reef Site (LAARS). The predominant sediments in this area are silica-quartz sands that constitute part of the Mississippi-Alabama-Florida (MALFLA) sand sheet (Curray 1960; Ludwick 1964). Off Pensacola, MALFLA sediments generally are low in organic matter (< 5 %) and are well-sorted (Dufrene, 2005). Areas of high carbonate concentration are concentrated in patches of shell rubble throughout the region, but few natural hardbottom (i.e., reef) areas exist on the shelf. The most extensive areas of natural reef habitat occur at depths greater than 100 m out to the shelf break (~200 m depth) (Gittings et al. 1992, Schroeder et al. 1988).

The water column over the shelf off Pensacola is subjected to a seasonal pycnocline driven by annual warming of the surface water and seasonally high rainfall. Surface currents also display seasonal variation, with shorter term shifts due to wind effects. Relatively weak east and west current velocities that were estimated from wind (greater) and Loop current forcings (lesser) with satellite tracked drifters resulted in little net annual movement, yet periodic strong winds can result in dramatic westward movement (He & Weisberg, 2002; Sturges et al., 2001; Yang et al., 1999). Wind driven currents from tropical storms may track the wind directional changes as storms pass (Sturges et al., 2001). Deeper water movements are less well understood, but at the depth of the *ex-Oriskany* reef are thought to mirror wind driven surface water movement with Ekman effects on direction. Any effect of strong currents on the dispersal of biota and the PCBs they might contain is poorly known.

Materials and Methods

All sampling was conducted with field data sheets initiating a chain of custody paperwork trail that followed each sample. Powder-free latex gloves were worn when handling all samples and sampling equipment. Specimen contact with plastics was avoided. Any evidence or question of contamination (e.g., ice water entry into sample bags, etc.) resulted in discarding those samples.

Sediments

Sediment samples were obtained using a Shipek grab sampler with a stainless steel sampling scoop (Figure 2), which was pre-cleaned by scrubbing with mild detergent in seawater and then rinsed with seawater, rinsed with alcohol, and finally rinsed with double-deionized H₂O (DDH₂O). The area sampled was .04 m² with a bite depth of 10.2 cm and a sample volume of 3000 ml. The sampler was deployed from the *R/V Wilson* (offshore transect) or the *R/V Seahorse* (inshore stations). Three replicate samples were obtained at each station. The sampler was cleaned as described above after each sample. For a given sample, latitude and longitude were recorded when the sampler hit the bottom. The sampler was unloaded and the sediment in the scoop was mixed, sub-sampled using pre-cleaned stainless steel spoons, and transferred to duplicate pre-labeled certified clean sample jars (500 ml). The remainder of the sample was placed in a plastic ziplock bag. Aliquots of sediment samples were used for elemental (C, N, S, & P) and stable isotope (δ^{13} C, δ^{15} N, and δ^{34} S) analysis, determining carbonate content, and particle size analysis. Samples for elemental and stable isotope analyses were acidified to remove carbonates prior to analysis. Jars for PCB analysis were kept at 4°C or below (on ice) and frozen (-20°C) upon return to the lab until shipment for analysis.

Figure 2. Shipek grab sampler for sediments (left) and filtration manifolds for water column particulates (right).

Stations for sediment collections are listed in Table 2 and mapped in Figure 3. A transect was established from just east of the proposed sinking site (30° 2.467'N, 87° 0.417'W) to south of the Tenneco Rig reef site located to the southwest (29° 59.733'N, 87° 05.111'W). Eight stations were set at exponentially increasing distances from 0.1 nm east and west of the *ex-Oriskany* sinking site, to roughly follow bathymetric contours in the direction of westerly current flow. Two additional stations were established between the *ex-Oriskany* site and the pass to Pensacola Bay, one in the Escambia artificial reef zone at approximately 8 nm offshore (30° 11.553N, 87° 14.41W) and one approximately 3 nm offshore near the outermost channel marker for the pass (30° 16.367N, 87° 17.274W; Figure 3).

Page	11	of 59

Sample ID	Latitude °N	Longitude °W	Depth m
ORISKE-3	30.0416	87.0069	65.2
ORISKE-2	30.0418	87.0069	65.2
ORISKE-1	30.0411	87.0064	65.2
ORISK1-3	30.0399	87.0073	65.2
ORISK1-2	30.0397	87.0074	65.2
ORISK1-1	30.0400	87.0075	65.2
ORISK2-3	30.0368	87.0085	59.7
ORISK2-2	30.0371	87.0077	59.7
ORISK2-1	30.0388	87.0087	59.7
ORISK3-3	30.0370	87.0122	63.4
ORISK3-2	30.0369	87.0123	63.4
ORISK3-1	30.0369	87.0120	63.4
ORISK4-3	30.0344	87.0160	62.5
ORISK4-2	30.0344	87.0160	62.5
ORISK4-1	30.0344	87.0161	62.5
ORISK5-3	30.0276	87.0261	59.4
ORISK5-2	30.0277	87.0260	59.4
ORISK5-1	30.0278	87.0259	59.4
ORISK6-3	30.0145	87.0466	53.3
ORISK6-2	30.0146	87.0467	53.3
ORISK6-1	30.0147	87.0465	53.3
ORISK7-3	29.9875	87.0869	54.3
ORISK7-2	29.9876	87.0869	54.3
ORISK7-1	29.9878	87.0866	54.3
EZAR8-3	30.1925	87.2402	21.6
EZAR8-2	30.1926	87.2402	21.6
EZAR8-1	30.1926	87.2402	21.6
PCOB-3	30.2728	87.2879	12.5
PCOB-2	30.2728	87.2879	12.5
PCOB-1	30.2728	87.2879	12.5

Table 2. Locations of sediment grab samples

Figure 3. Location of sediment sampling stations with respect to the *ex-Oriskany* reefing site. Three replicate grabs were made at each station.

Water Column Particulates

Stations for water column particulate collections are listed in Table 3. Water column particulates were collected on 142 mm diameter Whatman GF/F filters with a nominal pore size of 0.7μ m, inclusive of some bacteria and all particles of larger size up to 0.95 cm. Filters for collections were pre-cleaned by ashing at 500°C for one hour, weighed, and placed into individual labeled foil envelopes. Particulate material was collected from 10 m off the bottom at all sites. A lead weighted cable carried 3/8 inch ID silicon tubing to depth. Water was pumped up the tubing by a DC powered peristaltic pump (Masterflex). Three void volumes of the tubing were passed prior to sample collection. Sample water was sent through a stainless steel 142 mm filtration manifold (Millipore Corporation; Figure 2) for the collection of particulate material. Filtrate was collected and the volume recorded. Filters were folded, placed back into their respective envelopes and stored at $<4^{\circ}$ C until returned to the laboratory for frozen storage (-20°C). Sample filters were oven dried at 50°C and the dry weight recorded. Dried filters were shipped for PCB analysis. Three replicate filters were obtained at each station. The filtration manifold was cleaned after each sample by scrubbing with mild detergent in seawater, followed by a seawater rinse, an alcohol rinse, and a final DDH₂0 water rinse.

	Latitude	Longitude	Sample	Volume	Filtrate Dry	
Station	°N	°W	Depth m	Filtered l	Mass g	Dry Mass g l ⁻¹
ORISKO	30.0411	87.0069	63.4	50	0.25	0.0050
ORISKO	30.0411	87.0069	63.4	50	0.088	0.0018
ORISKO	30.0411	87.0069	63.4	25	2.992	0.1197
ORISK_TENECO	29.9956	87.0852	50.8	60	1.583	0.0264
ORISK_TENECO	29.9956	87.0852	50.8	60	1.9	0.0317
ORISK_TENECO	29.9956	87.0852	50.8	55	1.707	0.0310
EZAR8	30.1926	87.2402	22.8	25	1.934	0.077
EZAR8	30.1926	87.2402	22.8	30	3.807	0.1269
EZAR8	30.1926	87.2402	22.8	30	0.653	0.0218

Table 3. Locations and quantities of water column particulate samples.

Fish and Invertebrate Samples

Fish and invertebrate samples were collected with a trawl and with vertical hook and line gear (Table 4, Figure 4). Hook and line sampling of fishes occurred on April 6-7, 2006 onboard the chartered *F/V Dorado* and on May 16, 2006 onboard the chartered *F/V Total Package*. Sampling onboard the *Dorado* occurred at known artificial reef sites off Pensacola (Table 4, Figure 4). Fishing rods were rigged with either two-hook bottom rigs (n = 4 fishers) or sow rigs (n = 2 fishers). The terminal tackle of two-hook bottom rigs was 3-0 straight shank hooks baited with cut squid or menhaden. Sow rigs consisting of two 5-0 straight shank hooks snelled 10 cm apart to a 1.5-m leader and baited with a whole round scad. Sampling onboard the *Total Package* was similar to the *Dorado* except that it occurred farther offshore and over natural hardbottom versus artificial reefs (Table 4, Figure 4). The hook types used also were slightly different. On two-hook bottom rigs, terminal tackle was 10-0 circle hooks. A single 12-0 circle hook was tied to the end of sow rigs. Bait was similar for both rig types to that used on the *Dorado*.

Trawl samples were collected on April 20, 2006 with a 10-m wide otter trawl towed behind the National Marine Fisheries Service's *R/V HST*. The trawl was fished on the seafloor for approximately 20 minutes at six sites that ranged in depth from 18.8 to 84.4 m (Fig. 4). Trawls

were retrieved with a hydraulic winch and then catches were dumped from the cod end of the trawl onto a sorting table.

All specimens were placed on foil when brought on board. Total length was recorded (if appropriate) and specimens were wrapped in foil then enclosed in ziplock bags for storage at $<4^{\circ}$ C until returned to the laboratory for processing. Each bag was labeled externally with an indelible marker in addition to Sample Identification Labels enclosed in the bag. All materials used in sample processing were washed in mild detergent, rinsed in tap water, rinsed with alcohol, and rinsed in DDH₂O water. Sterile, powder-free gloves were used and changed between samples.

Length of all fish and invertebrate specimens was re-measured in the lab, and their total mass recorded. All specimens were handled on aluminum foil, which was changed for each sample. Whole scallops were removed from shells and homogenized into a composite sample. Sand dollars were homogenized whole. Chitinous pens were removed from squid bodies and the remainder was homogenized whole. Stainless steel fillet knives were used to remove fish muscle tissue and skin was removed from all samples. Total fish fillet mass was recorded, with the goal of providing 200 g of tissue for PCB analysis. When single fish did not produce \geq 200 g of muscle tissue, composites of muscle tissue dissected from more than one similar-sized fish were homogenized. Tissue from each sample (composite or individual fish) was homogenized in a FossTeactor tissue homogenizer, which was cleaned as described above before each sample. Sample homogenates were transferred to pre-labeled, certified clean 500 ml jars. Homogenates were stored at -20°C until shipment for PCB analysis. Aliquots of homogenates also were transferred to small vials and dried for elemental and stable isotope analysis. Otoliths and stomachs were dissected from fish carcasses after the removal of fillet samples. Left and right sagittal otoliths were removed from the braincase with steel chisels and forceps and stored in centrifuge tubes or small plastic ziplock bags. Stomachs were extracted and fixed with 10% buffered formalin in plastic bottles for gut content analysis. After at least 48 hours, stomach samples were removed from formalin and preserved in 70% isopropanol.

Date	Sampling Station	Latitude °N	Longitude °W	Depth m	Sampling Gear
4/6/2006	Tenneco Rig AR Site	29.9955	87.0851	48.8	Hook and Line
4/6/2006	Tenneco Rig AR Site	29.9984	87.0864	53.3	Hook and Line
4/6/2006	Chevron Rig AR Site	30.0712	87.0358	39.6	Hook and Line
4/6/2006	Chevron Rig AR Site	30.0780	87.0874	30.5	Hook and Line
4/6/2006	Chevron Rig AR Site	30.0672	87.0922	30.5	Hook and Line
4/6/2006	Santa Rosa II AR Site	30.0817	87.1946	26.2	Hook and Line
4/6/2006	Santa Rosa III AR Site	30.0830	87.1743	25.9	Hook and Line
4/6/2006	Santa Rosa I AR Site	30.0578	87.1982	28.0	Hook and Line
4/7/2006	Concrete Culverts AR Site	30.2017	87.2392	21.9	Hook and Line
4/7/2006	I-10 Bridge Rubble AR Site	30.1963	87.2385	24.4	Hook and Line
4/7/2006	Navy Barge AR Site	30.1865	87.2463	23.5	Hook and Line
4/7/2006	Tug Silvia AR Site	30.1849	87.2367	22.9	Hook and Line
4/7/2006	Tug Deliverance AR Site	30.1818	87.2437	23.5	Hook and Line
4/7/2006	Russian Freighter AR Site	30.1887	87.2178	25.6	Hook and Line
4/20/2006	Inshore 1	30.1878	87.2775	18.8	Trawling
4/20/2006	Inshore 2	30.1923	87.2775	20.7	Trawling
4/20/2006	Offshore 1A	29.9835	87.0838	54.6	Trawling
4/20/2006	Offshore 1B	29.9607	87.1097	56.4	Trawling
4/20/2006	Offshore 2A	30.0475	86.9932	67.1	Trawling
4/20/2006	Offshore 2B	30.0442	86.9911	84.4	Trawling
5/16/2006	Natural Hardbottom	29.9833	87.2837	30.5	Hook and Line
5/16/2006	Natural Hardbottom	29.8472	87.3042	57.9	Hook and Line
5/16/2006	Natural Hardbottom	30.0522	87.3058	25.9	Hook and Line

Table 4. Fish and invertebrate	sample collection data.
--------------------------------	-------------------------

Figure 4. Locations of fish and invertebrate sample collections relative to the ex-Oriskany reefing site.

Fish Age Estimation

Sagittae were prepared for age estimation by first embedding them sulcus side down in epoxy resin. Once the epoxy hardened, samples were mounted on microscope slides with Cryastalbond thermal setting epoxy and sectioned with a Buehler Isomet low-speed diamond-bladed saw (Figure 5). Resultant thin sections (~0.5 mm thick) were polished with 3200 grit wet dry sand paper and an alumina powder (0.3 μ m) slurry on a felt polishing cloth. Opaque zones in otolith thin sections were counted independently by two readers using an image analysis system that consisted of an Olympus DP70 digital camera mounted on an Olympus SZX12 dissecting microscope and integrated with a personal computer running Image Pro image analysis software. Between reader precision was estimated by computing average percent error (APE) and coefficient of variation (CV) (Campana 2001).

Figure 5. Otolith age estimation. A. Region of transverse section made through the core of a 683 mm TL red snapper sagitta analyzed in a previous study and B. the resulting thin section. Five opaque zones (i.e., annuli) are apparent in the thin section.

Opaque zone formation has been validated in previous studies as forming on an annual basis for adults of most species we analyzed. For other species, annual opaque zone formation has been validated for closely related species. We assumed opaque zone formation occurred on an annual time step for all species in our study, which is supported by recent reviews (Campana, 1999, 2005; Morales-Nin and Panfili, 2005). Therefore, annual age was equal to opaque zone counts (Figure 5). Fish age was determined for all individuals but was averaged among individuals in composites to compute a mean composite age.

Fish Gut Content Analysis

Gut contents of sampled fish were identified to the lowest taxon possible. Small prey items were identified with the image analysis system described above. Large prey items were identified without magnification. Individual prey items were counted, dried in an oven at 60° C for 24 hr, and then weighed. Percent by mass of predominant prey items was computed.

Elemental and Stable Isotope Analysis

Stable isotope analysis was conducted to estimate trophic position of samples based on C and N stable isotope ratios, and to assess if fishes and invertebrates fed predominantly on pelagic or benthic prey based on S stable isotope values. Phytoplankton in the northern Gulf typically has δ^{13} C, δ^{15} N, and δ^{34} S stables isotope delta values between -21 and -20%, 5 and 9‰, and 18 and 19‰, respectively (Fry 2006). Due to trophic fractionation, there is approximately a 0.5 to 1‰ enrichment in δ^{13} C for each trophic level above phytoplankton and a 1 to 3‰ enrichment in δ^{15} N (Fry 1988, 2006). Therefore, trophic level can be inferred from apparent enrichment of δ^{13} C and δ^{15} N relative to phytoplankton values. Sulfur isotope ratios do not experience trophic fractionation but they can be used to infer pelagic versus benthic production because S biogeochemical cycling in the benthos yields S isotope values (~14-15‰) depleted approximately 4 to 5‰ relative to phytoplankton (~18-19‰). Depleted S values in benthic organisms result from bacterial reduction of sulfate in sediments, which can yield greatly depleted sediment δ^{34} S values (e.g., < -20‰; Yamanaka et al., 2003).

Carbon, nitrogen and sulfur content was determined with an elemental analyzer; total phosphorous was determined using EPA method 365.4. Stable isotope ratios (C, N, S) were measured with elemental analysis coupled to a Europa Scientific GSL/Geo 20-20 isotope ratiomass spectrometer (IR-MS). First, frozen homogenized samples were thawed and dried in an oven at 60° C for 48 hours. Dried samples were weighed and stored in glass vials. Analytes included δ^{13} CV_{-PBD} (δ^{13} C), δ^{15} N_{Air} (δ^{15} N), and δ^{34} S_{V-CDT} (δ^{34} S). International Atomic Energy Agency (IAEA) standard reference materials (SRMs) were run periodically to assess machine performance. Analytical precision was estimated from duplicate analysis of randomly selected samples. Results of stable isotope analysis are reported here in the standard delta notation, with delta values computed as:

 $\delta X = [(R_{\text{sample}}/R_{\text{standard}}) - 1] \ge 1,000 \qquad \text{equation (1)}$

Where:
$$X = {}^{13}C, {}^{15}N, \text{ or } {}^{34}S$$

 $R = {}^{13}C; {}^{12}C, {}^{15}N; {}^{14}N, \text{ or } {}^{34}S; {}^{35}S$

standards = Pee Dee Belemnite (PDB) for C, Air for N, and Canyon Diablo Triolite for S.

PCB Analysis

Procedures for analysis of tissues followed guidelines established by the US EPA (US EPA 2000) for assessing the necessity for seafood consumption advisories due to toxins. Polychlorinated biphenyls (PCBs) were analyzed in all samples with high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC-HRMS) using USEPA Method 1668A. Following lipid extraction, a portion of the extract was dried and weighed to estimate the mass of lipid per volume of extract, which in turn was used to estimate percent lipid of the sample. During HRGC-HRMS analysis, ¹³C labeled internal standards were recovered with extraction efficiencies ranging from 50-149%. Quantification of native congeners was based on isotope dilution of ¹³C labeled internal standards. Method blanks, duplicate samples (intra-lab and inter-lab), matrix spikes, and laboratory control samples were used for quality control. Raw data \leq 5 times method blank values were considered non-detects (ND) and substituted with 0.5 times the reporting limits to account for the possibility of a particular congener being present but not detectable. Values for individual congeners were summed to obtain total PCBs for each sample. Toxic Equivalency Quotients for the Dioxin-like PCBs

(TEQ_P; congeners 77, 81, 105, 114, 118, 123, 126, 156/157, 167, 169, 189) were calculated using the toxic equivalency factors for humans established by the World Health Organization (Van den Berg et al., 1998).

Results and Discussion

Sediments

Sediments along the transect from the reefing site to the Tenneco Reef were dominated by coarse biogenic calcareous material. Calcium carbonate content of the sediments was high, ranging from 55 to 90% as expected (Table 5), with higher values closer to the reefing site. Large shell fragments shifted the particle size distribution to the larger size classes in the samples from the offshore transect (Table 6). Phosphorous content was low and consistent for all samples in the offshore transect (Table 5). Sediment particles at the reefing site were coated with dark material in contrast to the sediments south of the Tenneco reef (Figure 6). Sediments from the reefing site contained viable benthic diatoms and benthic foraminifera (Figure 7). The presence of live diatoms indicates light penetration to the benthos supporting primary production, suggesting autotrophic production may occur extensively over the *ex-Oriskany* reef. The two stations closer to Pensacola Pass, EZAR8 and PCOB had comparatively finer sediments (Table 6) with more quartz sand grains and lower carbonate content (Table 5).

Table 5. Mean	n and stand	ard deviation	s (SD) of carbon	nate and percen	t phosphorous	content of
sediment samp	oles (n=3 re	eplicates per s	ample).			
	Sample ID	Carbonate %	SD	Phosphorous %	SD	
	ORISKE	89 44	0.33	0 3213	0.0192	

Sample ID	Carbonate %	SD	Phosphorous %	SD
ORISKE	89.44	0.33	0.3213	0.0192
ORISK1	88.85	1.30	0.3746	0.0155
ORISK2	90.38	0.71	0.3710	0.0117
ORISK3	90.30	0.92	0.3940	0.0109
ORISK4	89.53	0.39	0.4302	0.0456
ORISK5	87.59	1.43	0.4029	0.0331
ORISK6	65.14	3.33	0.3628	0.0159
ORISK7	55.20	3.42	0.3911	0.0132
EZAR8	15.58	1.63		
РСОВ	8.91	3.27		

				Particle s	size (mm)			
Sample	1.00-	SD	0.500-	SD	0.300-	SD	<0.300 %	SD
ID	1.40 /0	50	0.030 /0	50	.0423 /0	50	/0	50
ORISKE	51.659	3.860	36.560	3.085	10.060	1.482	2.657	0.578
ORISK1	48.342	8.102	41.194	4.450	9.730	2.602	1.566	0.429
ORISK2	52.607	2.659	37.656	2.240	8.610	1.252	1.525	0.686
ORISK3	47.873	4.653	40.888	3.152	10.106	1.478	1.860	0.639
ORISK4	42.456	5.945	43.154	3.409	12.735	2.349	2.137	0.271
ORISK5	46.338	3.161	41.330	0.600	10.875	3.765	1.821	0.648
ORISK6	35.137	0.629	46.727	1.179	15.676	0.581	2.828	0.374
ORISK7	37.285	4.407	42.111	2.284	18.417	1.612	3.338	0.374
EZAR8	5.953	0.564	32.513	4.238	44.192	0.214	17.164	3.898
PCOB	0.642	0.367	10.013	4.886	30.880	6.074	59.495	10.547

Table 6. Particle size analysis of sediment samples. All figures are means and standard deviations (SD) of three replicates.

Figure 6. Sediment samples from the vicinity of the reefing site (ORISKE1-1; right) and south of the Tenneco reef at the end of the sampling transect (ORISK7-3; left).

Figure 7. Micrographs of benthic microflora and microfauna in sediments from the reefing site. Benthic diatoms (a-e) and benthic foraminifera (f-h) were well represented.

Organic content, as measured by sediment carbon, nitrogen, and sulfur content, decreased from the reefing site to the end of the transect near the Tenneco reef, and was lower for the sediments nearer the pass than the for the offshore stations (Table 7; Figure 8). Organic matter in offshore sediments was enriched in ¹³C relative to the nearer shore stations, indicating a greater impact of near-coastal phytoplankton production on sediment organic matter. Nitrogen isotope ratios were similar for all stations. Sulfur ratios were more variable within and among offshore stations. Organic sulfur content of inshore sediments was too low to provide reliable results.

Table 7. Results of elemental and stable isotope analysis of sediment organic matter. Figures are means and standard deviations (SD) of three replicates.

	Elemental			
Sample ID	Carbon %	SD	δ ¹³ C ‰	SD
ORISKE	1.5370	0.1024	-19.4632	0.3384
ORISK1	1.0448	0.1446	-19.4084	0.1059
ORISK2	1.1208	0.0692	-19.1999	0.0420
ORISK3	1.0227	0.1117	-19.5558	0.1298
ORISK4	0.8088	0.1955	-19.6161	0.3288
ORISK5	0.8447	0.0779	-19.4996	0.2448
ORISK6	0.2192	0.0206	-19.9604	0.3076
ORISK7	0.1284	0.0203	-20.5067	0.0957
EZAR8	0.0388	0.0077	-21.6801	0.2282
PCOB	0.0369	0.0037	-21.3743	0.1919

	Elemental				
Sample ID	Nitrogen %	SD	δ ¹⁵ N ‰	SD	C:N ratio
ORISKE	0.1964	0.0100	5.9706	0.5112	7.8240
ORISK1	0.1334	0.0264	5.4010	0.4135	7.8307
ORISK2	0.1535	0.0103	5.4487	0.1845	7.3005
ORISK3	0.1294	0.0119	5.1515	0.0762	7.9057
ORISK4	0.1083	0.0294	5.2433	0.1171	7.4676
ORISK5	0.1092	0.0064	5.5412	0.5861	7.7354
ORISK6	0.0269	0.0033	5.4389	0.3905	8.1552
ORISK7	0.0141	0.0039	5.9820	0.8068	9.1069
EZAR8	0.0042	0.0002	N content too low		9.2020
PCOB	0.0044	0.0004	N content too lo	W	8.4295

Sample ID	Elemental Sulphur %	SD	δ ³⁴ S ‰ SD		C:S ratio
ORISKE	0.1679	0.0453	-27.0090	3.4083	9.1542
ORISK1	0.1306	0.0151	-28.1697	1.7575	8.0025
ORISK2	0.1190	0.0070	-25.9029	0.4245	9.4148
ORISK3	0.1256	0.0305	-24.0246	0.8989	8.1418
ORISK4	0.1504	0.0408	-27.6411	1.0604	5.3777
ORISK5	0.1255	0.0272	-23.4541	3.5690	6.7295
ORISK6	0.0234	0.0027	S content low	•	9.3573
ORISK7	0.0122	0.0043	S content too low		10.5681
EZAR8	0.0178	0.0024	-22.9413 2.1748		
PCOB	0.0052	0.0001	S content too lo	W	7.1243

UNIVERSI of WES FLORIE

Figure 8. Organic Carbon (top row), organic Nitrogen (middle row), and organic Sulfur (bottom row) content (left column) and stable isotope ratios (right column) of sediments samples.

Polychlorinated biphenyl content of offshore sediments was consistently low and below reporting limits (RL) and blank results for most congeners (Table 8; Figure 9). Thus, ΣPCB values computed by substituting ½ RL values for non-detects showed very little difference among stations. Differences among stations are more apparent when we did not substitute ½ RL values for non-detects (Table 8; Figure 9). Precision estimates for both within lab analysis and between lab analyses were within acceptable limits (Table 9).

Table 8. TEQ for coplanar dioxin-like PCBs, the sum of all PCBs computed with and without substituting ¹/₂ reporting limit values for non-detects, and the percent lipids in sediment samples. All figures are averages and standard deviations (SD) of three replicates.

			ΣΡCBs		ΣPCBs			
			µg/kg		µg/kg			
Sample ID	TEQ _P	SD	ND=1/2 RL	SD	ND=0	SD	% Lipids	SD
ORISKE	0.0468	0.0004	0.4202	0.04250	0.0231	0.0209	0.1203	0.1558
ORISK1	0.0477	0.0020	0.4289	0.1370	0.0213	0.0164	0.0470	0.0207
ORISK2	0.0498	0.0038	0.4350	0.0928	0.0088	0.0046	0.0495	0.0205
ORISK3	0.0501	0.0034	0.5712	0.1186	0.0187	0.0143	0.0340	0.0419
ORISK4	0.0788	0.0478	0.3962	0.1100	0.0274	0.0100	0.1967	0.3061
ORISK5	0.0483	0.0046	0.3653	0.0388	0.0173	0.0017	0.0540	0.0227
ORISK6	0.0496	0.0014	0.5144	0.1293	0.0143	0.0086	0.2150	0.2988
ORISK7	0.0476	0.0022	0.4437	0.0632	0.0093	0.0061	0.0367	0.0121
EZAR8	0.0441	0.0071	0.3881	0.1415	0.0043	0.0028		
PCOB	0.0442	0.0057	0.4177	0.1260	0.0079	0.0061	0.0605	0.0134

Table 9. Precision estimates for sediment PCB analysis

		ΣΡCBs			
Sample ID	Duplicate Match	μg/kg	Mean	SD	RPD
Within Lab Blind Dupl	icates				
ORISK2-2	ORISKZ-1	0.1034			
ORISKZ-1	ORISK2-2	0.1048	0.1041	0.00103	1.39%
ORISKZ-2	ORISKE-3	0.0955			
ORISKE-3	E-3 ORISKZ-2		0.1119	0.02330	29.44%
Cross-Lab Duplicates					
ORISKE-1	ORISKE-1-A	0.0936			
ORISKE-1-A	ORISKE-1	0.1290	0.1113	0.02504	31.82%
ORISK3-3	ORISK3-3-A	0.1020			
ORISK3-3-A	ORISK3-3	0.1107	0.1064	0.00619	8.23%

of WES

Figure 9. Polychlorinated biphenyl (PCB) content of sediment samples. One half the reporting limit substituted for non-detected congeners (a) and zeros substituted for non-detected congeners (b).

Water Column Particulates

The material collected from the water column included all organisms and floating detritus larger than 0.7 μ m, but excluded large particulates such as ctenophores and other gelatinous zooplankton larger than ~ 1 cm. Values of C and N in this material was highly variable, but with a tendency towards higher concentrations inshore (EZAR8) and near the Tenneco Reef (ORISKT) (Table 10; Figure 10). It remains unknown if the vicinity of the large Tenneco reef structure had any role in particle production and export to the water column, but the values clearly show an enrichment relative to the ex-Oriskany sinking site. The suspended material at the Tenneco site also was enriched in N relative to the other sites, as indicated by C:N ratios (Table 10). Stable isotope values for carbon reveal a stronger similarity for the Tenneco Reef particulates and the EZAR8 samples than the particulates recovered from the sinking site. This trend is offset by the nitrogen isotope values for the particulates collected closer to shore being depleted (but variable) for the inshore station relative to the Tenneco reef site, perhaps reflecting nitrogen sources from the mainland at the EZAR8 site and more regenerated nitrogen at the Tenneco Reef site (Table 10 and Figure 10). The quantity of N in the samples from the ex-Oriskany reefing site were not sufficient to obtain a N isotope signal. It will be interesting to see if the ex-Oriskany as reef structure will have the same effect on water column particulates as the Tenneco Reef structure.

Sample ID	C content µg l ⁻¹	δ ¹³ C ‰	N content µg l ⁻¹	δ ¹⁵ N ‰	C:N
EZAR8-1A	100.2803	-25.5908	9.0831	2.2312	11.0403
EZAR8-1B	199.5496	-23.8427	26.0372	3.6009	7.6640
EZAR8-1C	102.3020	-25.3060	9.9510	6.3291	10.2806
ORISK0-A	100.7520	-22.5372	12.2455	-	8.2277
ORISK0-B	69.4144	-23.8079	6.7213	-	10.3275
ORISK0-C	62.8998	-22.4292	6.1934	-	10.1559
ORISKT-A	215.6565	-24.4241	28.9302	7.6511	7.4544
ORISKT-B	167.4707	-26.5522	20.6751	7.1087	8.1001
ORISKT-C	245.6462	-23.3176	32.1724	5.9035	7.6353

|--|

The PCB content per weight of material (non-detects = 0) was highest at the Tenneco site, although samples at the reefing site had high variability, and was lowest at the inshore site (Table 11). PCB content by volume of seawater (non-detects = 0) also showed the highest content at the Tenneco site, with similar values for the inshore and reefing sites.

	Non-detects = o	one half ro	eporting limit	t Non-detects = zero				
Sample	Mean SPCBs		Mean SPCBs		Mean SPCBs		Mean SPCBs	
ID	µg/kg	SD	pg l⁻¹	SD	µg/kg	SD	pg l ⁻¹	SD
EZAR8	0.00162	0.0001	0.1224	0.0864	0.000710	0.000023	0.0537	0.0986
ORISK0	0.00512	0.0054	0.0772	0.1063	0.00434	0.005536	0.0654	0.1090
ORISKT	0.00707	0.0019	0.2136	0.0726	0.00633	0.001908	0.1912	0.0729

Table 11. PCB content in water column particulates.

of WES

Figure 10. Results of elemental and stable isotope analysis of water column particulates.

Fish and Invertebrate Samples

A total of 24 taxa were analyzed for PCB tissue concentrations. Fish species accounted for 21 taxa, while invertebrates accounted for the remaining 3 (Table 12; Figure 11). Of the 286 individuals in those samples, 201 were obtained by trawling and 85 by hook and line sampling. Red Snapper represented the largest sample size at 17 individuals and had the greatest geographic coverage (Table 13; Figure 11m).

Fish Gut Content Analysis

Gut content analysis was performed for 214 of 232 fishes sampled (Table 13). Those fishes not analyzed had poorly preserved stomachs. Overall, 48% of the prey items were not identifiable among all stomach contents. Fish constituted the largest identifiable prey category among samples (22%), while decapods (i.e., crabs and shrimps) constituted 16%.

Elemental and Stable Isotope Analysis

Analytical accuracy and precision were high for stable isotope analysis of fish and invertebrate tissues. Concurrent analysis of SRMs indicated high accuracy of analysis (Table 14). Duplicate analysis was performed for 19 of 57 study samples. Results indicated high analytical precision of the IR-MS (Table 15). Stable isotope values of C and N were used as variables in correlation analysis as proxies for trophic position (Table 16).

Fish Age Estimation

Age was estimated for 232 individual fish sampled in the study (Table 18). Average percent error between the two readers was 6.77% and the coefficient of variation between readers was 9.57%. Typically, production aging facilities aim for APEs and CVs of 5 to 10%, depending on the species examined. Both measures of between reader agreement estimated in this study are within that range. That instills confidence in our aging techniques, especially given the diversity of species examined and the mostly young ages of individuals, for which disagreement of just one year can inflate APE and CV significantly. Ages of composite samples were averaged (Table 18). Composites consisted of similar sized fish within a given species. Comparison of mean age to age mode confirms the central tendency in the data and the similarity of ages among individuals in a given composite. Fish age was used as a variable in correlation analysis to assess bioaccumulation patterns.

2 1			1			5		
Species	Common Name	Sample ID	Analytical ID	# in Sample	Sample Date	Lat °N	Long °W	Gear
Argopecten gibbus	Calico Scallop	Scallop-1	060420AD1	23	4/20/06	29.98350	87.08383	Trawl
Balistes capriscus	Gray Triggerfish	GrayTrig-1	060406I1	1	4/6/06	30.06720	87.09217	HnL
Balistes capriscus	Gray Triggerfish	GrayTrig-2	060406L1	1	4/6/06	30.05775	87.19817	HnL
Balistes capriscus	Gray Triggerfish	GrayTrig-3	060406T1	1	4/6/06	30.08303	87.17423	HnL
Balistes capriscus	Gray Triggerfish	GrayTrig-4	060516A1	3	5/16/06	29.98333	87.28367	HnL
Balistes capriscus	Gray Triggerfish	GrayTrig-5	060516E1	1	5/16/06	29.84717	87.30417	HnL
Calamus leucosteus	Whitebone Porgy	WhBPorgy-1	060406A2	1	4/6/06	29.99843	87.08638	HnL
Centropristes ocyurus	Bank Seabass	BankSeaBass-1	060420B1	18	4/20/06	30.04422	86.99112	Trawl
Centropristes ocyurus	Bank Seabass	BankSeaBass-2	060420Y1	13	4/20/06	29.98350	87.08383	Trawl
Cynoscion arenarius	Sand Seatrout	SandSeatrout-1	060420G1	6	4/20/06	30.04422	86.99112	Trawl
Diplectrum formosum	Sandperch	Sandperch-1	060420AH1	6	4/20/06	30.19233	87.27750	Trawl

Table 12. Synopsis of fish and invertebrate samples collected for PCB analysis.

Table 12	concluded). Sync	psis o	f fish	and in	vertebrate	samples	collected	for PCB	analysis.
	`									

Species Common Name Sample ID ID Sample Date Lat °N Long °W Encope aberrans Sand Dollar SandDollar-1 060420AX1 25 4/20/06 30 19233 87 27750	Gear
<i>Encope aberrans</i> Sand Dollar Sand Dollar-1 060420A X1 25 4/20/06 30 10233 97 27750	T1
Lincope avertains Sand Donar Sand Donar 0004207A1 23 4/20/00 30.17233 01.27/30	Irawi
Epinephelus morio Red Grouper RedGrouper-1 060516D1 1 5/16/06 29.84717 87.30417	HnL
Epinephelus morio Red Grouper RedGrouper-2 060516D2 1 5/16/06 29.84717 87.30417	HnL
Epinephelus morio Red Grouper RedGrouper-3 060516D3 1 5/16/06 29.84717 87.30417	HnL
Haemulon aurolineatum Tomtate Tomtate-1 060406N1 10 4/6/06 30.08168 87.19457	HnL
Haemulon aurolineatum Tomtate Tomtate-2 060407N1 11 4/7/06 30.18868 87.21780	HnL
Lagodon rhomboides Pinfish Pinfish-1 060420H1 15 4/20/06 30.04422 86.99112	Trawl
Leiostomus xanthurus Spot Spot-1 06042011 15 4/20/06 30.04422 86.99112	Trawl
Loligo sp. Squid Squid-1 060420AR1 4 4/20/06 29.98350 87.08383	Trawl
Loligo sp. Squid Squid-2 060420AT 2 4/20/06 30.18783 87.27750	Trawl
Lutjanus campechanus Red Snapper RedSnapper-1 060406C1 1 4/6/06 29.99843 87.08638	HnL
Lutjanus campechanus Red Snapper RedSnapper-2 060406C2 1 4/6/06 29.99843 87.08638	HnL
Lutjanus campechanus Red Snapper RedSnapper-3 060406C3 1 4/6/06 29.99843 87.08638	HnL
Lutjanus campechanus Red Snapper RedSnapper-4 060406C4 1 4/6/06 29.99843 87.08638	HnL
Lutjanus campechanus Red Snapper RedSnapper-5 060406C5 1 4/6/06 29.99843 87.08638	HnL
Lutjanus campechanus Red Snapper RedSnapper-6 060406H1 1 4/6/06 30.07803 87.08740	HnL
Lutjanus campechanus Red Snapper RedSnapper-7 060406K3 1 4/6/06 30.05775 87.19817	HnL
Lutjanus campechanus Red Snapper RedSnapper-8 060406S2 1 4/6/06 30.08303 87.17423	HnL
Lutjanus campechanus Red Snapper RedSnapper-9 060406S3 1 4/6/06 30.08303 87.17423	HnL
Lutjanus campechanus Red Snapper RedSnapper-10 060407A1 1 4/7/06 30.20170 87.23920	HnL
Lutjanus campechanus Red Snapper RedSnapper-11 060407A5 1 4/7/06 30.20170 87.23920	HnL
Lutjanus campechanus Red Snapper RedSnapper-12 060407A7 1 4/7/06 30.20170 87.23920	HnL
Lutjanus campechanus Red Snapper RedSnapper-13 06040701 2 4/7/06 30.18868 87.21780	HnL
Lutjanus campechanus Red Snapper RedSnapper-14 06040704 2 4/7/06 30.18868 87.21780	HnL
Lutjanus campechanus Red Snapper RedSnapper-15 060420AF1 6 4/20/06 29.98350 87.08383	Trawl
Lutjanus campechanus Red Snapper RedSnapper-16 060420W1 4 4/20/06 29.96067 87.10967	Trawl
Lutjanus campechanus Red Snapper RedSnapper-17 06051611 1 5/16/06 29.84717 87.30417	HnL
<i>Lutjanus griseus</i> Gray Snapper GraySnapper-1 060516B1 1 5/16/06 29.98333 87.28367	HnL
<i>Lutjanus griseus</i> Gray Snapper GraySnapper-2 060516J1 1 5/16/06 30.05217 87.30583	HnL
Micropognias undulatus Atlantic Croaker AtlCroaker-1 060420A1 13 4/20/06 30.04422 86.99112	Trawl
Mycteroperca microlepis Gag Gag-1 060406J1 1 4/6/06 30.06720 87.09217	HnL
Mycteroperca microlepis Gag Gag-2 060407C1 1 4/7/06 30.19628 87.23845	HnL
Mycteroperca microlepis Gag Gag-3 060407H1 1 4/7/06 30.18487 87.23667	HnL
Mycteroperca microlepis Scamp Gag-4 060516F1 1 5/16/06 29.84717 87.30417	HnL
Mycteroperca phenax Scamp Scamp-1 060516C1 1 5/16/06 29.84717 87.30417	HnL
Mycteroperca phenax Scamp Scamp-2 060516C2 1 5/16/06 29.84717 87.30417	HnL
Mycteroperca phenax Scamp Scamp-3 060516C3 1 5/16/06 29.84717 87.30417	HnL
Pagrus pagrus Red Porgy RedPorgy-1 060406G1 5 4/6/06 30.07803 87.08740	HnL
Pagrus pagrus Red Porgy RedPorgy-2 060406U1 1 4/6/06 30.08303 87.17423	HnL
Pagrus pagrus Red Porgy RedPorgy-3 060420AA1 3 4/20/06 29 96067 87 10967	Trawl
Rhomoplites aurorubens Vermilion Snapper VerSnapper-1 060406B1 1 4/6/06 29 99843 87 08638	HnL
Rhomoplites aurorubens Vermilion Snapper VerSnapper-2 060406B2 1 4/6/06 29 99843 87 08638	HnL
Rhomophies durorubens Vermilion Snapper VerSnapper-3 06040601 11 4/6/06 30.08168 87.19457	HnI
Rhomoplites aurorubens Vermilion Snapper VerSnapper-4 060407M1 3 4/7/06 30.18868 87.21780	HnL
Sciagnons ocelatus Red Drum Redfish-1 060406F1 1 4/6/06 30.07118 87.03577	HnI
Scatchops occurates in Real Danie Realister 1 060516H1 1 5/16/06 29 84717 87 30417	HnI
Seriola dumerilli Amberiack Amberiack-1 060516G1 1 5/16/06 29.84717 87.30417	HnI
Seriola dumerilli Amberiack Amberiack-2 060516G2 1 5/16/06 20.04717 87.30417	HnI
Schola aumerian Amoeijaex Amoeijaex 00051002 1 5/10/00 27.04/17 67.30417 Synodus fagtens Inshore Lizardfish Lizardfish-1 060420AB1 1 4/20/06 20.06067 97.10067	Trawl
Synodus joerens Inshore Lizardrish Lizardrish-1 000420AD1 1 4/20/00 27.7000 / 8/.1090 / Synodus foetens Inshore Lizardrish Lizardrish-2 060420AD1 6 4/20/06 30.04422 96.00112	Trawl
Trachurus lathami Round Scad RoundScad-1 060420AC1 41 4/20/06 29 96067 87 10967	Trawl

Figure 11. Sampling locations and number of individuals (in legend) for species analyzed for PCB tissue concentrations. a. Atlantic calico scallop *Argopectin gibbus*. b. gray triggerfish, *Ballistes capricsus*. c. whitebone porgy, *Calamus leucosteus*. d. bank seabass, *Centropristes ocyurus*.

Figure 11 (continued). Sampling locations and number of individuals (in legend) for species analyzed for PCB tissue concentrations. e. sand seatrout, *Cynoscion arenarius*. f. sand perch, *Diplectrum formosum*. g. sand dollar, *Encope aberrans*. h. red grouper, *Epinephelus morio*.

Figure 11 (continued). Sampling locations and number of individuals (in legend) for species analyzed for PCB tissue concentrations. i. tomtate, *Haemulon aurolineatum*. j. pinfish, *Lagodon rhomboides*. k. spot, *Leiostomus xanthurus*, l. squid, *Loglio* sp.

Figure 11 (continued). Sampling locations and number of individuals (in legend) for species analyzed for PCB tissue concentrations. m. red snapper, *Lutjanus campechanus*. n. gray snapper, *Lutjanus griseus*. o. Atlantic croaker, *Micropogonias undulatus*. p. gag grouper, *Mycteroperca microlepis*.

Figure 11 (continued). Sampling locations and number of individuals (in legend) for species analyzed for PCB tissue concentrations. q. scamp grouper, *Mycteroperca phenax*. r. red porgy, *Pagrus pagrus*. s. vermilion snapper, *Rhombolites aurorubens*. t. red drum, *Sciaenops ocelatus*.

Figure 11 (concluded). Sampling locations and number of individuals (in legend) for species analyzed for PCB tissue concentrations. u. king mackerel, *Scomberomorus cavalla*. v. amberjack, *Seriola dumerilli*. w. inshore lizardfish, *Synodus foetens*. x. round scad, *Trachurus lathami*.

Table 13. Results of diet analysis for fish composites. Diet percentages of predominant prey categories are given; Un-ID = unidentified prey and Un-ID = unidentified invertebrate prey. Data are not available for composites denoted NA (poor preservation) or SE (stomach everted).

Sample ID	Common Name	Un-ID	Fish	Decapoda	Cephalopoda	Other Inverts	Un-ID Invert
GrayTrig-1	Gray Triggerfish	0	0.57	0.43	0	0	0
GrayTrig-2	Gray Triggerfish	0.05	0	0	0	0.95	0
GrayTrig-3	Gray Triggerfish	0	0	1	0	0	0
GrayTrig-4	Gray Triggerfish	0.28	0.32	0	0.05	0.35	0
GrayTrig-5	Gray Triggerfish	0	0	0.37	0	0.1	0.53
WhBPorgy-1	Whitebone Porgy	1	0	0	0	0	0
BankSeaBass-1	Bank Seabass	0	0.66	0.34	0	0	0
BankSeaBass-2	Bank Seabass	NA	NA	NA	NA	NA	NA
SandSeatrout-1	Sand Seatrout	0.5	0.5	0	0	0	0
Sandperch-1	Sandperch	0	0.86	0.14	0	0	0
RedGrouper-1	Red Grouper	0	0	1	0	0	0
RedGrouper-2	Red Grouper	0	0.88	0.12	0	0	0
RedGrouper-3	Red Grouper	1	0	0	0	0	0
Tomtate-1	Tomtate	0.61	0.17	0	0.22	0	0
Tomtate-2	Tomtate	0.42	0.58	0	0	0	0
Pinfish-1	Pinfish	0.16	0.81	0.02	0	0.01	0
Spot-1	Spot	0.61	0	0.3	0	0.09	0
RedSnapper-1	Red Snapper	SE	SE	SE	SE	SE	SE
RedSnapper-2	Red Snapper	0	0.88	0.12	0	0	0
RedSnapper-3	Red Snapper	0	0	0	1	0	0
RedSnapper-4	Red Snapper	1	0	0	0	0	0
RedSnapper-5	Red Snapper	1	0	0	0	0	0
RedSnapper-6	Red Snapper	1	0	0	0	0	0
RedSnapper-7	Red Snapper	0	0	1	0	0	0
RedSnapper-8	Red Snapper	0	0	1	0	0	0
RedSnapper-9	Red Snapper	1	0	0	0	0	0
RedSnapper-10	Red Snapper	0	0.46	0	0.54	0	0
RedSnapper-11	Red Snapper	0	0	1	0	0	0
RedSnapper-12	Red Snapper	0	1	0	0	0	0
RedSnapper-13	Red Snapper	0	1	0	0	0	0
RedSnapper-14	Red Snapper	1	0	0	0	0	0
RedSnapper-15	Red Snapper	0.8	0	0.2	0	0	0
RedSnapper-16	Red Snapper	0	0	l	0	0	0
RedSnapper-1/	Red Snapper	1	0	0	0	0	0
GraySnapper-1	Gray Snapper	1	0	0	0	0	0
GraySnapper-2	Gray Snapper	1	0	0	0	0	0
AtlCroaker-1	Atlantic Croaker	0.92	0	0.08	0	0	0
Gag-1	Gag	0	1	0	0	0	0
Gag-2	Gag	1	0	0	0	0	0
Gag-3	Clag	0	1	0	0	0	0
Scamp 1	Scamp	1	0	0	0	0	0
Scamp 2	Scamp	1	0	0	0	0	0
Scamp 3	Scamp	1	0	0	0	0	0
RedPorgy_1	Red Porgy	0.5	0	0.25	0.25	0	0
RedPorgy-2	Red Porgy	1	0	0.23	0.25	0	0
RedPorgy-3	Red Porgy	NA	NA	NA	NA	NA	NA
VerSnapper-1	Vermilion Snapper	0	0	0	0	0.69	0.31
VerSnapper-2	Vermilion Snapper	1	0	0	0	0	0
VerSnapper-3	Vermilion Snapper	0.78	0.11	0	0.11	0	0
VerSnapper-4	Vermilion Snapper	0.33	0.67	0	0	0	0
Redfish-1	Redfish	1	0	0	0	0	0
KingMack-1	King Mackerel	1	0	0	0	0	0
Amberjack-1	Greater Amberiack	1	0	0	0	0	0
Amberjack-2	Greater Amberiack	0	1	0	0	0	0
Lizardfish-1	Inshore Lizardfish	NA	NA	NA	NA	NA	NA
Lizardfish-2	Inshore Lizardfish	0.33	0.02	0	0.65	0	0
RoundScad-1	Round Scad	0.49	0.05	0	0	0.07	0.4
				, v		,	

Table 14. Results of IR-MS analysis of International Atomic Energy Agency standard reference	ce
material samples run concurrently with study samples.	

Analyte	IAEA SRM	Accepted Value ‰	n	Mean Analysis Value ‰ (± SD)
$\delta^{15}N_{Air}$	NBS-1577b, Bovine Liver	7.65	17	$7.64 \pm (0.11)$
$\delta^{15}N_{Air}$	IAEA-R007, Ammonium Sulfate N1	0.40	6	$0.47 \pm (0.09)$
$\delta^{15}N_{Air}$	IAEA-R007, Ammonium Sulfate N2	20.30	5	$20.50 \pm (0.05)$
$\delta^{13}C_{V-PBD}$	NBS-1577b, Bovine Liver	-21.60	17	$-21.60 \pm (0.06)$
$\delta^{13}C_{V-PBD}$	IAEA-CH-6, Cane Sugar	-10.43	8	-10.42 ‰ (± 0.03)
$\delta^{13}C_{V-PBD}$	IA-R005, IA-Beet Sugar	-26.03	8	$-26.00 \ \% \ (\pm 0.05)$
$\delta^{34}S_{V-CDT}$	IA-R027, Whale Baleen	16.30	16	16.59 ‰ (± 0.22)
$\delta^{34}S_{V-CDT}$	IA-R036, Barium Sulfate	20.74	15	20.76 ‰ (± 0.14)

Table 15. Results of duplicate IR-IVIS analysis of fish and invertebrate tissue sample	Table 15.	Results of du	plicate IR-MS	analysis of fish	and invertebrate	tissue samples
--	-----------	---------------	---------------	------------------	------------------	----------------

Duplicate Samples	Mean Difference in δ ¹³ C‰	SD ‰	Mean Difference in δ^{15} N ‰	SD ‰	Mean Difference in δ ³⁴ S‰	SD ‰
19	0.00	0.105	-0.01	0.054	-0.01	0.134

Stable isotope analysis of fish and invertebrate tissue samples revealed information about their trophic ecology not available from stomach content analysis, which suffered from small sample size and identification issues related to digestion. Reef fishes showed a trend in trophic position from planktivorous vermilion snapper to piscivorous gag and amberjack, as the latter two species were approximately two trophic levels above vermilion snapper (Figure 12A). Trophic position tended to increase with fish size (Figure 12B), but vermilion snapper trophic position was relatively low regardless of size. Vermilion snapper, as planktivores, clearly had pelagic δ^{34} S signatures (Figure 12C). Red snapper prey resources were intermediate between pelagic and benthic, while amberjack and large groupers consumed mostly benthic prey. There was a less clear trend in pelagic versus benthic prey resources with increasing fish size (Figure 12D).

Stable isotope signatures of non-reef fishes and invertebrates also were informative relative to their trophic position. The one sand dollar sample had C and N signatures consistent with an algal diet (Figure 13A). However, the sample was insufficient to analyze for S (Figure 13C), thus no information is available to infer a pelagic phytoplankton versus a benthic microphytobenthos carbon source. All other invertebrate samples had pelagic S signatures, as did the single king mackerel sample. The king mackerel had an intermediate δ^{13} C value, which, combined with its gut contents and S signature, indicated a pelagic prey base likely consisting of planktivorous fishes.

Table 16. Results of IR-MS analysis of fish and invertebrate tissue samples. NA = Not Analyzed.

Sample ID	Species	Taxa	δ ¹⁵ N ‰	δ ¹³ C‰	δ ³⁴ S‰
Scallop-1	Argopectin gibbus	Invert	10.81	-18.3	19.51
GrayTrig-1	Balistes capriscus	Fish	12.67	-17.44	19.06
GrayTrig-2	Balistes capriscus	Fish	12.64	-17.21	19.48
GrayTrig-3	Balistes capriscus	Fish	NA	NA	NA
GrayTrig-4	Balistes capriscus	Fish	12.71	-17.88	19.39
GrayTrig-5	Balistes capriscus	Fish	11.46	-17.21	18.28
WhBPorgy-1	Calamus lecosteus	Fish	12.54	-16.38	18.92
BankSeaBass-1	Centropristis ocyura	Fish	10.8	-17.94	19.98
BankSeaBass-2	Centropristis ocyura	Fish	9.26	-17.82	18.92
SandSeatrout-1	Cynoscion arenarius	Fish	NA	NA	NA
Sandperch-1	Diplectrum formosum	Fish	11.54	-17.25	17.78
SandDollar-1	Encope aberrans	Invert	6.37	-20.12	NA
RedGrouper-1	Epinephelus morio	Fish	12.84	-17.24	18.12
RedGrouper-2	Epinephelus morio	Fish	12.33	-16.36	17.65
RedGrouper-3	Epinephelus morio	Fish	12.99	-16.69	18.63
Tomtate-1	Haemulon aurolineatum	Fish	11.81	-16.93	17.22
Tomtate-2	Haemulon aurolineatum	Fish	12.62	-17.13	-17.11
Pinfish-1	Lagadon rhomboides	Fish	10.57	-17.64	16.9
Spot-1	Leiostomus xanthurus	Fish	12.71	-18.22	15.02
Squid-1	Loglio sp.	Invert	10.25	-19.3	20.44
Squid-2	Loglio sp.	Invert	10.58	-18.81	19.43
RedSnapper-1	Lutjanus campechanus	Fish	12.67	-17.69	19.89
RedSnapper-2	Lutjanus campechanus	Fish	NA	NA	NA
RedSnapper-3	Lutjanus campechanus	Fish	12.7	-17.63	20.08
RedSnapper-4	Lutjanus campechanus	Fish	NA	NA	NA
RedSnapper-5	Lutjanus campechanus	Fish	12.57	-17.37	19.12
RedSnapper-6	Lutjanus campechanus	Fish	13.56	-16.6	19.46
RedSnapper-7	Lutjanus campechanus	Fish	13.23	-16.62	17.98
RedSnapper-8	Lutjanus campechanus	Fish	12.53	-17.23	18.95
RedSnapper-9	Lutjanus campechanus	Fish	12.54	-17.04	18.47
RedSnapper-10	Lutjanus campechanus	Fish	13.05	-17.8	18.61
RedSnapper-11	Lutjanus campechanus	Fish	13.7	-16.91	18.67
RedSnapper-12	Lutjanus campechanus	Fish	13.65	-17.1	18.79
RedSnapper-13	Lutjanus campechanus	Fish	NA	NA	NA
RedSnapper-14	Lutjanus campechanus	Fish	NA	NA	NA
RedSnapper-15	Lutjanus campechanus	Fish	NA	NA 17.40	NA
RedSnapper-16	Lutjanus campechanus	Fish	11.8	-1/.48	19
RedSnapper-1/	Lutjanus campechanus	Fish	13.21	-16.76	1/.36
GraySnapper-1	Lutjanus griseus	Fish	12.73	-1/.26	14.28
GraySnapper-2	Lutjanus griseus	Fish	13.80	-16.8/	17.36
AtiCroaker-1	Micropongonias undulatus	Fish	12.42	-18.28	17.04
Gag-1	Mycteroperca microlepis	Fish	13.08	-16.36	16.96
Gag-2	Mycteroperca microlepis	FISH	14.09	-10.40	14.83
Gag-3	Mycteroperca microlepis	Fish	12.02	-10./3	1/.80
Gag-4	Mycleroperca microlepis	Fish	13.17	-10.07	10.5
Scamp-1	Mycleroperca phenax	Fish	13.44	-10.93	10.77
Scamp-2 Scamp-3	Mycteroperca phenax	Fish	12.0	-17.47	19.92
RedPorm 1	Pagrus pagrus	Fish	12.37	-17.58	19.07
RedPorgy 2	Pagrus pagrus	Fish	12.84	-17.38	17.34
RedPorgy_3	Pagrus pagrus	Fish	12.04	-17.77	18.64
VerSnapper_1	Rhomhonlites auroruhans	Fish	12.12	-1/.42	10.04
VerSnapper-?	Rhombonlites aurorubers	Fish	11.57	-18.25	19.72
VerSnapper-3	Rhomboplites aurorubens	Fish	NA	NA	NA
VerSnapper-4	Rhomboplites aurorubens	Fish	12.64	-18.03	19.65
Redfish-1	Scigenons ocelatus	Fish	11 38	-17 51	14.17
KingMack-1	Scoberomorus cavalla	Fish	12.63	-18.88	19.67
Amberiack-1	Seriola dumerilli	Fish	13.99	-16 37	17.05
Amberjack-2	Seriola dumerilli	Fish	13 31	-16 94	17.62
Lizardfish-1	Synodus foetens	Fish	13.06	-16.6	16.16
Lizardfish-2	Synodus foetens	Fish	NA	NA	NA
RoundScad-1	Trachurus lathami	Fish	9.66	-20.02	19.16

Figure 12. Plots of stable isotope ratio data for reef fishes.

Figure 13. Plots of stable isotope ratio data for non-reef fishes and invertebrates.

Fish and Invertebrate PCB analysis

Precision estimates for PCB analysis were within acceptable limits with the exception of 1 of 4 intra-lab duplicates (060406G1 and 060406ZZ2; RPD 82.6%) and 2 of 7 between lab duplicates (060516D3 and 060516D3-A, 96.7%; 060516E1 and 060516E1-A, 77.12%). Despite the high variance in these samples, the data were accepted. The low levels of PCBs found in the samples makes relatively small differences in measurements seem dramatic when in reality, differences between these samples is not great from a regulatory point of view. For duplicates with high variability, differences between samples for individual congers was proportional for all detected forms, and analytical reporting limits were consistent between samples.

Sample ID	Duplicate Match	ΣPCBs µg kg ⁻¹	Mean	SD	RPD
Blind Duplicates					
060516A1	060516ZZ1	0.2444			
060516ZZ1	060516A1	0.3233	0.2839	0.05574	27.77%
060407O4	060407ZZ3	5.2781			
060407ZZ3	060407O4	4.7858	5.0319	0.34814	9.78%
060516G2	060516ZZ4	9.3039			
060516ZZ4	060516G2	9.7520	9.5280	0.31689	4.70%
060406G1	060406ZZ2	1.2679			
060406ZZ2	060406G1	0.5268	0.8973	0.52408	82.60%
Cross-Lab Duplicates					
060516C1	060516C1-A	2.6166			
060516C1-A	060516C1	3.2104	2.9135	0.41986	20.38%
060406B1	060406B1-A	0.5442			
060406B1-A	060406B1	0.7310	0.6376	0.13207	29.29%
060516E1	060516E1-A	0.1441			
060516E1-A	060516E1	0.3249	0.2345	0.12787	77.12%
060516D3	060516D3-A	0.6326			
060516D3-A	060516D3	1.8160	1.2243	0.83677	96.67%
060407N1	060407N1-A	1.0318			
060407N1-A	060407N1	1.1615	1.0966	0.09173	11.83%
060407A5	060407A5-A	4.8037			
060407A5-A	060407A5	4.2918	4.5478	0.36192	11.25%
060407A7	060407A7-A	4.6464			
060407A7-A	060407A7	6.1121	5.3793	1.03638	27.25%

Table 17	Precision	estimates	for	tissue	PCB	analysis
1 4010 17.	1 1 0 0 10 10 11	countation	101	ubbuc	IUD	analy 515

PCB content of tissue samples is listed in Table 18. The distribution of PCB congers by homologs (degree of chlorination) is presented in Figure 14, along with the homolog composition of commercial Arochlors for comparison. No obvious patterns of similarity are visually apparent, nor are there any similarities by cluster analysis (of individual congeners or homologs) related to species or trophic status. Although some studies have shown pattern matching to sources, several factors contribute to obscuring source patterns in biota. The low levels of PCBs in most of these samples results in many congeners being non-detects, affecting the overall pattern. Biological partitioning can shift proportions of congers in profiles. Multiple sources may blend to confuse patterns in biota. Selective degradation may also shift the proportions of congeners. Many of these factors may be accentuated by the distance from sources of PCBs, resulting in attenuation and mixing by transport and biological activity.

		3.6												
analyzed or a composite of tissue from several individuals $(n \ge 1)$ was analyzed.														
off fillets of	fish l	ateral mu	ısculatur	e. Sam	ple size	e (n) indi	cates t	issue fr	om a	single i	ndiv	idual w	as	
Table 18. T	issue	sample c	haracter	istics ar	nd PCB	concent	rations	s by we	t mas	s of invo	erteb	orates ar	nd skir	1-

		Mean	Mean	Mean	Age	PCB µg/kg	TEQ _P µg/kg	PCB µg/kg	TEQ _P µg/kg	%
Sample ID	n	TL mm	Mass g	Age	Mode	ND = 1/2 RL	ND = 1/2 RL	ND = 0	ND = 0	Lipid
Amberjack-1	1	820	9330	3	3	9.2656	0.1658	9.2530	0.1658	0.5
Amberjack-2	1	475	2030	1	1	9.3039	0.2857	9.2878	0.2837	0.2
AtlCroaker-1	13	202.38	98.22	1.25	1	1.8246	0.0395	1.8068	0.0177	1
BankSeaBass-1	18	108.17	42.64	0.61	1	0.3529	0.0298	0.3160	0.0022	0
BankSeaBass-2	13	102	35.65	0.5	0	0.4364	0.0546	0.4078	0.0524	0.3
Gag-1	1	530	1890	3	3	2.0362	0.0459	2.0096	0.0187	0.1
Gag-2	1	700	4670	4	4	22.5725	0.4727	22.5604	0.1175	0.7
Gag-3	1	435	840	2	2	2.4448	0.0675	2.4265	0.4707	0.1
Gag-4	1	405	1230	2	2	2.1777	0.0434	2.1583	0.0214	0.2
GraySnapper-1	1	270	510	3	3	1.6499	0.0776	1.6274	0.0756	0.5
GraySnapper-2	1	252	420	2	2	1.2285	0.0397	1.2062	0.0178	0.6
GrayTrig-1	1	468	1800	5	5	0.3430	0.0327	0.3073	0.0078	0.1
GrayTrig-2	1	272	460	3	3	0.3739	0.0300	0.3390	0.0028	0.2
GrayTrig-3	1	353	940	4	4	0.2085	0.0246	0.1778	0.0027	0.2
GrayTrig-4	3	224.67	486.67	2.67	3	0.2444	0.0260	0.2151	0.0041	0.2
Gray Irig-5	1	365	1/90	6	6	0.1441	0.0234	0.112/	0.0016	0.3
KingMack-I	1	/50	5090	6	6	92.0700	2.3139	92.0626	2.3119	6
Lizardfish-1	I	3/4	640	6	6	0.2758	0.0228	0.2438	0.0008	0.8
Lizardfish-2	6	208	92.23	4.4	4	0.3/43	0.0222	0.3464	0.0005	0.5
Pinfish-I	15	140.07	/5.12	2.08	2	2.3580	0.0569	2.3375	0.0370	0.6
Redfish-I	1	/96	4630	2	2	1.8908	0.0458	1.8/23	0.0239	0.3
RedGrouper-1	1	460	1/20	6	6	12.6143	0.2486	12.5981	0.2287	0.2
RedGrouper-2	1	380	2690	6	6	2./301	0.0490	2.7095	0.0272	0.2
RedGrouper-3	1	420	1/80	6	6	0.6326	0.0295	0.6069	0.0078	0.3
RedPorgy-1	5	319	384.72	4.5	5	1.26/9	0.0437	1.2443	0.0240	0.5
RedPorgy-2	1	317	435	222	5	2.4261	0.0909	2.4087	0.0908	0.4
RedPorgy-3	3	205	248.77	2.33	2	0.0000	0.0000	0.0000	0.0000	0.1
RedSnapper-1	1	480	1520	2	5	3.6200	0.1238	3.6043	0.1218	1.5
RedSnapper-10	1	400	960	3	3	1.9211	0.0520	1.8962	0.0458	0.1
RedSnapper-11	1	613	3400	4	4	4.803/	0.1007	4./902	0.0270	0.5
RedSnapper-12	1	205	2300	3	3	4.6464	0.11/5	4.6336	0.0987	0.2
RedSnapper-13	2	295	480	2	2	2.0401	0.0/18	2.0221	0.0110	0.2
RedSnapper-14	3	330.07	//0	3	3	5.2/81	0.0674	5.2634	0.0698	1./
RedSnapper-15	6	153.33	131.29	1	1	0.7828	0.0404	0.7528	0.0129	0.2
RedSnapper-16	4	150.5	122.8/	1	1	0.0000	0.0000	0.0000	0.0000	0.6
RedShapper-1/	1	/40	2600	3	5	2.8094	0.0002	2.8477	0.0412	0
RedSnapper-2	1	262	5090 652.9	4	4	3.0257	0.0214	3.0080	0.1181	0.1
RedSnapper-3	1	401	032.8	2	2	0.9/13	0.0314	0.9400	0.0097	0.7
RedSnapper-4	1	205	920 780	2	2	1 2026	0.0300	0.0090	0.0093	0.1
RedSnapper-5	1	559	2610	6	6	2 0024	0.0393	2 9961	0.0130	0.1
RedSnapper-0	1	614	2010	2	2	2.9024	0.0844	2.0001	0.0824	0.1
RedSnapper-/	1	229	550	2	2	1 4422	0.0480	2.8208	0.0212	0.1
RedSnapper-8	1	205	280	2	2	0.6779	0.0403	0.6527	0.0189	0.7
Reusilapper-9	41	293 ND	ND	0.71	3	1 2569	0.0299	1 2222	0.0079	0.4
SandDollar 1	25	30.15	1.05	0.71 NA	U NA	0.4071	0.0383	0.3790	0.0100	0.1
Sandperch 1	6	136	75.13	2.17	2	1 3733	0.0223	1 3484	0.0005	0.5
SandSeatrout 1	6	205.5	151.33	2.17	2	1.3733	0.0808	1.3464	0.0788	0.8
Scallon 1	23	203.3	0.03	ے NA	Z NA	0.2726	0.0005	0.2361	0.0445	0.3
Scamp 1	1	400	570	11A	111A	2.6166	0.0280	2 5080	0.0013	2.2
Scamp 2	1	305	570	4	4	0.3764	0.0300	0.3480	0.0787	0.1
Scamp 3	1	350	90	4	4	0.9334	0.0233	0.0480	0.0034	0.1
Scamp-5	1	152.67	90	1 47	4	1 0396	0.0318	1.0156	0.0497	0.1
Squid-1	13	120.25	58.01	NA	NA	0.0002	0.0047	0.0000	0.0128	0.0
Squid-1	2	120.25	99.25	NA	NA	2 6134	0.0535	2 5010	0.0320	1.2
Tomtate_1	 10	100.0	124.02	2.80	2	1 /012	0.0335	1 3761	0.0320	0
Tomtate_?	11	210.1	124.02	2.09	3	1.4012	0.0410	1.0/10	0.0143	0.2
VerSnapper 1	1	 	1199.45	J.27 A		0.5442	0.0365	0.5242	0.0755	1
VerSnapper 2	1	435 A15	0.80	2	2	0.5442	0.0231	0.3243	0.0033	0.8
VerSnapper 3	1 11	181.27	86.04	3.62	2	1 3265	0.0220	1 3033	0.0009	1.5
VerSnapper-4	3	270.33	333.68	3 3 3	3	3 1081	0.0773	3 0951	0.0099	1.5
WhRPorgy_1	1	385	970	J.J.J A	1	1 6/36	0.0530	1 6212	0.03/0	0.2
WILDI UIEy-1	1	505	210	-T	-т	1.0750	0.0337	1.0414	0.0340	0.4

Figure 14. Percent composition of total PCBs (ND=0) by homologs in fish and invertebrate tissues. Arochlor data from DeGrandechamp and Barron (2005).

Two samples exceeded the total PCB screening value of 20 μ g kg⁻¹ (US EPA, 2000), a king mackerel at 92.1 μ g kg⁻¹ and a gag grouper at 22.6 μ g kg⁻¹. The TEQ screening value for Dioxin-like activity (0.26 ng kg⁻¹; US EPA, 2000) was exceeded by four samples, the above two fish at 2.31 and 0.47, respectively, and an amberjack at 0.29, and a red grouper at 0.47. The extremely high levels measured in king mackerel are a cause for concern, and may indicate transport of PCBs from inshore to offshore habitats as that species seasonally enters the southern reaches of Pensacola Bay.

Correlation analysis was used to examine relationships between fish size, trophic position, and percent lipid in muscle tissue and PCB loads (Tables 19-25). Plots of these variables provide visual confirmation of these patterns (Figures 15-19). PCB content and the TEQ_P calculation were highly correlated for all analyses, suggesting the co-planar, Dioxin-like PCB congeners were a constant proportion of the PCB loads, with the exception of some specimens like the Amberjack and Red Grouper noted earlier that exceed the TEQ_P screening value but not the total PCB screening value

For all specimens (Table 19; Figure 15), length, mass, age, $\delta^{15}N$, and $\delta^{13}C$ were significantly correlated will one another, with some variable pairs being highly (i.e., r > 0.7) correlated. Lipid content was correlated with age but that correlation was weak (r = 0.29). Lipid content was highly correlated with ΣPCB concentration and TEQ_P , but those correlations were driven by high lipid content in muscle of the one king mackerel sampled. Muscle lipid content was not correlated with PCB load when the king mackerel sample was removed form the correlation analysis (Table 20). Interestingly, the strength of correlations between age and mass increased when the king mackerel was omitted, and N and C stable isotope ratios were significantly but weakly correlated with PCB load.

Similar patterns were found for analysis of reef fishes only (Table 21; Figure 16), where fish length and mass were significantly correlated with PCB load. PCB load also was significantly but weakly correlated with δ^{15} N and δ^{13} C. For non-reef species, however, few significant correlations existed (Table 22; Figure 17). This was most likely due to low levels of PCBs in these organisms. The highest PCB load in this category was for a single pinfish sample, a fish that recruits and matures in estuarine environments before moving offshore with ontogeny.

Sufficient sample sizes existed to examine PCB correlations independently for grouper and snappers. Analysis of correlations for all grouper species indicated several significant correlations existed (Table 23; Figure 18), although single gag and red groupers with elevated PCB loads clearly influenced the analysis relative to the trend of the other samples. Analysis for all snapper species revealed several significant correlations existed among the measured variables (Table 24; Figure 19). Perhaps the most interesting result from correlation analysis on snapper samples is the relatively strong correlation between trophic position (δ^{15} N value) and PCB concentration. Trophic position increased with size/age which in turn was significantly correlated with PCB concentration, thus indicating bioaccumulation with age. Those trends and significant correlations are present throughout the data, but are most evident in taxa for which higher sample sizes were collected. For example, patterns of bioaccumulation with size and trophic position are clearly apparent in grouper (Figure 18) and snapper data (Figures 19 and 20). It should be stressed, however, that some groupers and snappers sampled can live several decades and most fish we sampled were relatively small, young individuals.

Table 19. Correlation matrix of variables measured in all fish and invertebrate samples (n = 62) analyzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities ≤ 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	$\delta^{13}C$	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Length	0.845	0.408	0.602	0.468	0.047	0.188	0.391	0.369
Lengui	< 0.001	0.002	< 0.001	< 0.001	0.742	0.146	0.002	0.003
Mass		0.327	0.387	0.319	0.014	0.189	0.424	0.396
Iviass		0.013	0.005	0.020	0.921	0.145	< 0.001	0.002
1 90			0.380	0.304	0.004	0.290	0.262	0.252
Age			0.007	0.037	0.815	0.027	0.047	0.055
s ¹⁵ N				0.746	-0.106	0.098	0.136	0.116
O IN				< 0.001	0.455	0.486	0.332	0.470
s ¹³ C					-0.164	-0.226	-0.143	-0.226
οC					0.244	0.103	0.309	0.103
\$340						0.107	0.0426	0.047
0 5						0.449	0.764	0.739
Linid							0.799	0.805
Lipid							< 0.001	< 0.001
SDCD								0.996
ZPUB								< 0.001

Table 20. Correlation matrix of variables measured in fish and invertebrate samples (n = 61) analyzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. King mackerel were omitted from the analysis. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities ≤ 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	$\delta^{13}C$	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Longth	0.831	0.364	0.618	0.587	0.032	-0.062	0.466	0.452
Length	< 0.001	0.006	< 0.001	< 0.001	0.826	0.638	< 0.001	< 0.001
Mass		0.276	0.396	0.433	-0.003	-0.092	0.519	0.486
Iviass		0.040	0.004	< 0.001	0.981	0.483	< 0.001	< 0.001
1 00			0.387	0.417	0.020	0.168	0.105	0.092
Age			0.006	0.003	0.895	0.212	0.422	0.482
\$ ¹⁵ N				0.776	-0.108	0.126	0.350	0.335
0 IN				< 0.001	0.450	0.372	0.011	0.015
s ¹³ C					-0.158	-0.055	0.289	0.286
0 C					0.278	0.700	0.038	0.040
s ³⁴ c						0.112	-0.044	-0.037
0 5						0.435	0.757	0.798
Linid							0.105	0.092
Lipid							0.422	0.482
SDCD								0.959
ZPCB								< 0.001

Table 21. Correlation matrix of variables measured in all reef fish samples (n = 44) analyzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities ≤ 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	δ ¹³ C	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Length	0.826	0.389	0.622	0.461	0.141	-0.012	0.481	0.459
	< 0.001	0.010	< 0.001	< 0.004	0.406	0.938	0.001	0.002
Maga		0.486	0.465	0.443	0.071	-0.071	0.524	0.520
Iviass		0.001	0.004	0.006	0.678	0.651	< 0.001	< 0.001
1 90			0.022	0.149	0.058	0.176	0.198	0.217
Age			0.899	0.387	0.737	0.258	0.203	0.162
s ¹⁵ N				0.599	-0.059	0.151	0.472	0.454
O IN				< 0.001	0.729	0.372	0.003	0.005
s ¹³ C					-0.161	-158	0.324	0.282
οC					0.342	0.352	0.050	0.091
\$340						0.141	-0.039	-0.031
0 5						0.405	0.817	0.855
Lipid							0.134	0.150
							0.387	0.332
SDCD								0.976
ZrCB								< 0.001

Table 22. Correlation matrix of variables measured in all non-reef fish samples (n = 14) analyzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities < 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	δ ¹³ C	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Length	0.956	0.301	0.242	0.322	-0.022	-0.100	-0.004	0.289
	< 0.001	0.318	0.474	0.335	0.948	0.745	0.991	0.338
Maga		0.048	0.018	0.125	-0.026	-0.170	0.052	0.438
Iviass		0.877	0.958	0.715	0.940	0.580	0.865	0.135
1 99			0.695	0.741	-0.246	0.127	-0.160	-0.295
Age			0.012	0.006	0.441	0.665	0.586	0.307
s15 x t				0.567	-0.354	0.379	-0.919	-0.284
O IN				0.055	0.260	0.225	0.776	0.371
s ¹³ C					-0.198	0.076	-0.019	0.149
8 ⁻⁰ C					0.538	0.814	0.953	0.644
s ³⁴ c						0.117	0.054	0.127
0 5						0.716	0.868	0.695
T :: 1							0.247	0.141
Lipid							0.394	0.632
SDCD								0.562
ZPCB								0.037

Table 23. Correlation matrix of variables measured in grouper samples (n=11) analyzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities ≤ 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	$\delta^{13}C$	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Length	0.774	-0.085	0.901	0.811	-0.787	0.110	0.683	0.667
	0.005	0.815	< 0.001	0.003	0.004	0.747	0.021	0.025
Mass		0.0261	0.584	0.0980	-0.829	-0.005	0.793	0.762
Iviass		0.467	0.059	0.021	0.002	0.988	0.004	0.006
1 33			-0.195	-0.099	0.265	0.031	0.161	0.141
Age			0.589	0.785	0.460	0.932	0.657	0.698
s15 x t				0.7064	-617	0.351	0.544	0.544
O IN				0.015	0.043	0.289	0.084	0.084
s ¹³ C					-714	0.067	0.280	0.240
οC					0.014	0.844	0.404	0.477
\$340						0.003	-0.702	-0.673
05						0.993	0.016	0.023
Lipid							0.133	0.171
							0.696	0.616
SDCD								0.995
ZPCB								< 0.001

Table 24. Correlation matrix of variables measured in snapper samples (n = 21) analyzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities ≤ 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	$\delta^{13}C$	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Length	0.837	0.619	0.443	0.381	0.099	-0.232	0.497	0.409
	< 0.001	0.003	0.097	0.161	0.724	0.311	0.022	0.065
Magg		0.656	0.412	0.362	-0.021	-0.212	0.455	0.481
Iviass		0.001	0.127	0.184	0.940	0.356	0.038	0.027
1 99			0.236	0.093	0.225	0.442	0.381	0.445
Age			0.398	0.742	0.420	0.045	0.089	0.043
\$ ¹⁵ N				0.748	-0.302	-0.200	0.654	0.462
O IN				0.001	0.275	0.476	0.008	0.083
s ¹³ C					0426	-0.321	0.387	0.225
0 C					0.114	0.243	0.154	0.420
s ³⁴ c						-0.353	0.491	0.032
0 5						0.197	0.063	0.909
Tinid							0.178	0.216
Lipid							0.440	0.347
SDCD								0.762
ZFCD								< 0.001

Table 25. Correlation matrix of variables measured in red snapper samples (n = 17) anlayzed during pre-sinking assessment of PCB distribution and concentration in northern Gulf of Mexico marine fauna. Pearson's *r* and the significance value are provided for each variable pair. Significance probabilities ≤ 0.05 are highlighted.

	Mass	Age	$\delta^{15}N$	δ ¹³ C	$\delta^{34}S$	Lipid	ΣΡCΒ	TEQ _P
Length	0.822	0.703	0.838	0.595	-0.412	-0.100	0.552	0.493
	< 0.001	0.004	0.003	0.070	0.237	0.722	0.033	0.062
Maga		0.719	0.591	0.412	-0.379	-0.099	0.452	0.515
Iviass		0.003	0.072	0.236	0.280	0.725	0.091	0.049
1 90			0.527	0.274	0.206	0.457	0.469	0.525
Age			0.117	0.443	0.569	0.086	0.078	0.045
s ¹⁵ N				0.535	-0.194	-0.073	0.760	0.399
O IN				0.111	0.591	0.841	0.011	0.252
s ¹³ C					-0.450	-0.055	0.225	-0.119
8 ⁻⁰ C					0.192	0.880	0.532	0.743
s ³⁴ c						0.843	0.094	0.488
0 5						0.002	0.795	0.152
T : : 4							0.274	0.403
Lipid							0.324	0.137
SDCD								0.712
ZPCB								0.003

Figure 15. Plots of PCB body burdens in all fish and invertebrate samples as a function of (a) mass, (b) length, (c) %lipid, (d) age, and (e) nitrogen stable isotope ratios. King mackerel is excluded from plots.

of WES

Figure 16. Plots of PCB body burdens in reef fish samples as a function of (a) mass, (b) length, (c) %lipid, (d) age, and (e) nitrogen stable isotope ratios.

Figure 17. Plots of PCB body burdens in non-reef fish samples as a function of (a) mass, (b) length, (c) %lipid, (d) age, and (e) nitrogen stable isotope ratios King mackerel is excluded from plots.

Figure 18. Plots of PCB body burdens in grouper samples as a function of (a) mass, (b) length, (c) %lipid, (d) age, and (e) nitrogen stable isotope ratios.

Figure 19. Plots of PCB body burdens in snapper samples as a function of (a) mass, (b) length, (c) %lipid, (d) age, and (e) nitrogen stable isotope ratios.

PCB concentration did not display a strong relationship with latitude which was used as a proxy for distance offshore (Figure 20). The king mackerel that had the highest PCB value among all samples was sampled farthest offshore. Other high PCB loads were measured in top-level predators, which is consistent with correlations between PCB concentration and trophic position. Although PCB concentration generally increased with latitude within taxa (Figure 20), which is especially apparent for red snapper data (Figure 20c), PCB concentration was not significantly correlated to latitude for non-reef species, reef species or even red snapper. King mackerel, whose sole representative had the highest PCB concentration, is a migratory coastal pelagic species which forages in coastal bays where PCB contamination is higher than in the offshore environment. It remains unknown whether reef fishes, like snappers and groupers display high enough site fidelity to individual reefs to impart a gradient of PCB body burdens across the shelf as a function of inshore sources, but the PCB data presented herein suggest that possibility.

Figure 20. Fish and Invertebrate PCB data plotted by latitude. Data are separated by (a) all non-reef species, (b) reef species, and (c) red snapper only.

References Cited

- Alam, S.K. and M.S. Brim, MS. 2000. Organochlorine, PCB, PAH, and metal concentrations in eggs of loggerhead sea turtles (*Caretta caretta*) from northwest Florida, USA. *Journal of Environmental Science and Health. Part. B, Pesticides, food contaminants, and agricultural* wastes. 35:705-724.
- Baine, M. 2001. Artificial reefs: a review of their design, application, management, and performance. *Ocean & Coastal Management* 44:241-259.
- Baird, R.C., N.P. Thompson, T.L. Hopkins, and W.R. Weiss. 1975. Chlorinated hydrocarbons in mesopelagic fishes of the Eastern Gulf of Mexico. *Bulletin of Marine Science* 24:473-481.
- Bohnsack, J.A. & S.P. Sutherland. 1985. Artificial reef research: a review with recommendations for future priorities. *Bulletin of Marine Science* 37:11-39.
- Camapana, S.E. 2005. Otolith science entering the 21st century. *Marine and Freshwater Research* 56:485-596.
- Campana, S.E. 2001. Accuracy, precision, and quality control in age determination, including a review of the use and abuse of age validation methods. *Journal of Fish Biology* 59:197-0242.
- Connor, K.T., M. Eversen, S.H.Su, and B.L. Finley. 2005. Quantitation of polychlorinated biphenyls in fish for human cancer risk assessment: a comparative study. *Environmental Toxicology and Chemistry* 24:17-24.
- Curray, JR. 1960. Sediments and history of Holocene Transgression, continental shelf, northern Gulf of Mexico. In: Shepard, F.P., F.B. Phleger, & T.H. van Andel, eds., *Recent Sediments, Northwest Gulf of Mexico*. Tulsa OK, AAPG, p. 221-266.
- Currents. 2006. Navy Rests ex-ORISKANY in Gulf of Mexico. *Currents* Fall 2006, pp 8-24. <u>https://www.denix.osd.mil/denix/Public/News/Navy/Currents/2006/Fall/Fall2006_Navy_Res</u> ts_Ex-Oriskany.pdf.
- DeGrandechamp, R.L and M.G. Barron. 2005. *PCB analysis and risk assessment at Navy installations*. *Part A: Overview of PCB mixtures*. Navy Environmental Health Center, Portsmouth, VA. 28 pp.
- Dufrene, T.A. 2005. *Geological Variability and Holocene Sedimentary Record on the Northern Gulf of Mexico Inner to Mid-Continental Shelf*. Master's Thesis. Louisiana State University. 100 pp.
- Duke T, J. Lowe, and A. Wilson. 1970. A polychlorinated biphenyl (Aroclor 1254) in the water, sediment, and biota of Escambia Bay, Florida. *Bulletin of Environmental Contamination and Toxicology* 5:171-180.
- Fry, B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. *Limnology and Oceanography* 33:1182-1190.
- Fry, B. 2006. Stable Isotope Ecology. Springer, New York. 308 pp.
- Gelsleichter, J., C.A. Manire, N.J Szabo, E. Cortes, J. Carlson, and L. Lombardi-Carlson. 2005. Organochlorine concentrations in bonnethead sharks (*Sphyrna tiburo*) from Four Florida Estuaries. *Arch Environ Contam Toxicol*, 48(4):474-83.
- George, R.D., C.R. In, R.K. Johnston, P.F. Seligman, R.D. Gauthier, and W.J. Wild. 2006. Investigation of PCB release-rates from selected shipboard solid materials under laboratorysimulated shallow ocean (artificial reef) environments. Space and Naval Warfare Systems Center Technical Report 1936, Sandiego, CA. 836 pp. <u>http://www.spawar.navy.mil/sti/publications/pubs/tr/1936/tr1936cond.pdf</u>

- Giam, C.S., A.R. Hanks, R.L. Richardson, W.M. Sackett, and W.K. Wong. 1972. DDT, DDE, and polychlorinated biphenyls in biota from the Gulf of Mexico and Caribbean Sea- 1971. *Pesticide Monitoring Journal* 6:139-143.
- Giam, C.S., R.L. Richardson, D. Taylor, and M.K. Wong. 1974. DDT, DDE and PCBs in the tissues of reef dwelling Groupers (Serranidae) in the Gulf of Mexico and the Grand Bahamas. *Bulletin of Environmental Contamination and Toxicology* 11:189-192
- Giam, C.S., R.L. Richardson, W.K. Wong, A.R. Hanks, and W.M. Sackett. 1973. Chlorinated hydrocarbons in plankton from the Gulf of Mexico and northern Caribbean. *Bulletin of Environmental Contamination and Toxicology* 9:376-382.
- Gittings, S.R., T.J. Bright, W.W. Schroeder, W.W. Sager, J.S. Laswell, and R. Rezak. 1992. Invertebrate assemblages and ecological controls on topographic features in the northeast Gulf of Mexico. *Bulletin of Marine Science* 50:435-455.
- He, R and Weisberg, RH. 2002. West Florida shelf circulation and temperature budget for the 1999 Spring transition. *Continental Shelf Research* 22:719-748.
- Johnson-Restrepo, B., K. Kannan, R. Addink, and D.H. Adams, 2005. Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida. *Environmental Science & Technology* 39:8243-8250.
- Karouna-Renier, N., R.A. Snyder, and K.R. Rao. 2007a. An assessment of potential health risks posed by shellfish collected in estuarine waters near Pensacola, Florida. *Environmental Pollution*. 145:474-488.
- Karouna-Renier, N. K., S. M. Gibson, R. A. Snyder, K. R. Rao. 2007b. Contamination Profiles in Largemouth Bass and Mullet Collected in Northwest Florida. SETAC Annual Meeting, Montreal, Canada, November, 2007.
- Kasperzack, R.A. 1998. Use of oil and gas platforms as habitat in Louisiana's artificial reef program. *Gulf of Mexico Science* 16:37-45.
- Kennicutt, M.C. II, J.M. Brooks, E.L. Atlas, and C.S. Giam. 1988. Organic compounds of environmental concern in the Gulf of Mexico: a review. *Aquatic Toxicology* 11:191-212.
- Krahn, M., D.W. Brown, G.M. Ylitalo, and T.K. Collier. 2005. Analysis of edible tissue from fish collected in coastal waters of the Gulf of Mexico affected by Hurricane Katrina to determine recent exposure to persistent organic pollutants (POP's). http://www.st.nmfs.gov/hurricane katrina/water sediment survey.html)
- Lewis M, G. Scott, D. Bearden, R. Quarles, J. Moore, E. Strozier, S. Sivertsen, A. and Dias, M. Sanders. 2002. Fish tissue quality in near-coastal areas of the Gulf of Mexico receiving point source discharges. *The Science of the Total Environment* 284:249-261.
- Lewis, M.A., J.C. Moore, L.R. Goodman, J.M. Patrick, R.S. Stanley, T.H. Roush, and R.L. Quarles. 2001. The effects of urbanization on the chemical quality of three tidal bayous in the Gulf of Mexico. *Water Air and Soil Pollution* 127:65-91.
- Ludwick, J.C. 1964. Sediments in the Northeastern Gulf of Mexico. In: Miller, R.L., ed., *Papers in Marine Geology: Shepard Commemorative Volume*. New York: MacMillan, p. 204-240.
- Minton, R.V. & S.R. Heath. 1999. Alabama's artificial reef program: Building oases in the desert. *Gulf of Mexico Science* 16:105-106.
- Morales-Nin, B. and J. Panfili. 2005. Seasonality in the deep sea and tropics revisited: what can otoliths tell us? *Marine and Freshwater Research* 56:585-598.
- Nimmo, D.R., D.J. Hansen, J.A. Couch, N.R. Cooley, P.R. Parrish, and J.I. Lowe. 1975. Toxicity of Aroclor® 1254 and its physiological activity in several estuarine organisms. *Archives of Environmental Contamination* 3:22-39.

- Okechi, J.K. and J.J. Polovina. 1995. An evaluation of artificial shelters in the artisinal spiny lobster fishery in Gazi Bay, Kenya. *South African Journal of Marine Science* 16:373-376.
- Oliver, L.M., W.S. Fisher, J.T. Winstead, B.L. Hemmer, and E.R. Long. 2001. Relationships between tissue, contaminants, and defense related characteristics of oysters (*Crassostrea virginica*) five Florida bays. *Aquatic Toxicology* 55:203-222.
- Rosales, M.T.L., A.V. Botello, H. Bravo, and E.F. Mandelli. 1979. PCBs and organochlorine insecticides in oysters from coastal lagoons of the Gulf of Mexico. *Bulletin of Environmental Contamination and Toxicology* 21:652-656.
- Salata, G.G., T.L. Wade, J.L. Sericano, J.W. Davis, and Brooks, JM. 1995. Analysis of Gulf of Mexico bottlenose dolphins for organochlorine pesticides and PCBs. *Environmental Pollution* 88:167-175.
- Schroeder, W. W. and C. F. Wood (eds.) 2000. Physical/Biological Oceanographic Integration Workshop for De Soto Canyon and Adjacent Shelf: October 19-21, 1999. OCS Study MMS 2000-074. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 168 pp.
- Schroeder, W.W., A.W. Shultz, & J.J. Dindo. 1988. Inner-shelf hardbottom areas, northeastern Gulf of Mexico. *Transactions of the Gulf of Mexico Association of Geological Scientists* 38:535-541.
- Seaman, W., Jr. 2000. *Artificial Reef Evaluation With Application to Natural Marine Habitats*. CRC Press. Boca Raton, FL. 264 p.
- Shipp, R.L. 1999. The artificial reef debate: Are we asking the right questions. *Gulf of Mexico Science* 17:51-55.
- Stone, R.B., L.M. Sprague, J.M. McGurrin & W. Seaman, Jr. 1991. Artificial habitats of the world: synopsis and major trends. p. 31-57 in W. Seaman, Jr. & L.M. Sprague, editors. *Artificial Habitats for Marine and Freshwater Fisheries*. Academic Press, San Diego. 267 p.
- Sturges, W., P.P. Niiler, and R.H. Weisberg (2001). Northeastern Gulf of Mexico Inner Shelf Circulation Study. Final Report, MMS Cooperative Agreement 14-35-0001-30787. OCS Report MMS 2001 – 103, U.S. Minerals Management Service, Herndon, VA, 90pp
- US EPA (2000) *Guidance for Assessing Chemical Contamination Data for Use in Fish Advisories.* 3rd ed. EPA 823-B-00-007.
- MMS 2000. Workshop for De Soto Canyon and Adjacent Shelf: October 19-21, 1999. OCS Study MMS 2000-074. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 168 pp.
- Van den Berg, M., L. Birnbaum, A.T. Bosveld, B. Brunström, P. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. van Leeuwen, A.K. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, and T. Zacharewski. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. *Environ Health Perspect*. 106: 775–792.
- Wade, T.L., E.L. Atlas, J.M. Brooks, M.C. Kennicutt II, R.G. Fox, J. Sericano, B. Garcia-Romero, and D. DeFreitas. 1988. NOAA Gulf of Mexico Status and Trends Program: Trace Organic Contaminant Distribution in Sediments and Oysters. *Estuaries* 11:171-179.
- Watanabe, M, K. Kannan, A. Takahashi, B.G. Loganathan, D.K. Odell, S. Tanabe, and J.P Giesy. 2000. Polychlorinated biphenyls, organochlorine pesticides, tris(4chlorophenyl)methane, and tris(4-chlorophenyl)methanol in livers of small cetaceans stranded along Florida coastal waters, USA. *Environmental Toxicology and Chemistry* 19:1566-1574.

- Wells, RS, V. Tornero, A. Borrell, A. Aguilar, T.K. Rowles, H.L. Rhinehart, S. Hofmann, W.M. Jarman, A.A. Hohn, and J.C. Sweeney. 2005. Integrating life-history and reproductive success data to examine potential relationships with organochlorine compounds for bottlenose dolphins (*Tursiops truncatus*) in Sarasota Bay, Florida. *The Science of the Total Environment* 349:106-119.
- Yamanaka, T., C. Mizota, and S. Shimoyama. 2003. Sulfur isotopic variations in soft tissues of five benthic animals from the reductive, tidal-flat sediments in northern Kyushu, Japan. *Marine Biology* 142:327:331.
- Yang, H., R.H. Weisber, P.P Niiler, W. Sturges, and W. Johnson. 1999. Lagrangian circulation and forbidden zone on the West Florida Shelf. *Continental Shelf Research* 19:1221-1245.

Acknowledgements

We thank the captains and crews of the vessels Total Package, Dorado, HST, E.O. Wilson, and Seahorse for their able assistance. The staff of the Marine Services Center at the UWF were also very helpful in making this work happen. Sean Creekmore and George Smith are thanked for their assistance in gut content and ageing analyses. Dr. R.S. Podemski, Associate Vice President for Research, and the staff of the Office of Research and Sponsored Programs at UWF were instrumental in getting the necessary contract paperwork accomplished. Dr. K.R. Rao, Director of CEDB, is thanked for his support and invaluable advice.