Unavoidable pairs of partial latin squares of order four

Jaromy Kuhl Hannah Hinojosa

Abstract

This technical report characterizes unavoidable pairs of partial latin squares of order 4 on two symbols.

1 Introduction

A partial latin square of order n is an $n \times n$ array of n distinct symbols in which each symbol occurs at most once in each row and column. If there are no empty cells, then the array is called a latin square. It is useful to think of a partial latin square P as a set of ordered triples, where $(i, j, k) \in P$ if and only if symbol k appears in cell (i, j) of P (see Figure 1).

	1	2	
2		1	
1	2		

Figure 1: $P = \{(2, 2, 1), (2, 3, 2), (3, 1, 2), (3, 3, 1), (4, 1, 1), (4, 2, 2)\}.$

We say that P is avoidable if for each set of n symbols, there exists a latin square L such that if $(i, j, k) \in P$, then $(i, j, k) \notin L$. Unless otherwise stated, we will assume that the symbol set is $\{1, 2, \ldots, n\}$. We say that a pair of partial latin squares $\{P_1, P_2\}$ is avoidable if there is a latin square L that avoids P_1 and P_2 simultaneously. In this paper we characterize the unavoidable pairs of partial latin squares of order 4 on two symbols.

A conjugate of P is an array made by uniformly permuting the coordinates in each of the elements of P. The column/symbol-conjugate of P is an array where the second and third coordinates of each triple are exchanged. An isotope of P is an array formed by relabeling the rows and/or columns and/or symbols of P. The arrays in Figure 2 are examples of an isotope and the column/symbol-conjugate of a given partial latin square.

The following observations are well-known and used throughout this paper.

- * P is avoidable if and only if a conjugate of P is avoidable.
- * P is avoidable if and only if an isotope of P is avoidable.

[1		1	2	1	4	
		1	2					1	2	3
ſ	2		1		2		1		3	1
	1	2			1	2			1	2

Figure 2: Partial latin square P, an isotope of P (row 1 and row 2 are interchanged) and the column/symbol-conjugate of P respectively.

Let P_1 and P_2 be partial latin squares of order 4 on the symbol set $\{1, 2\}$ (i.e. symbols 3 and 4 do not appear in P_1 and P_2). The array formed by superimposing P_1 onto P_2 is called a partial 2-entry latin square of order 4 on the symbol set $\{1, 2\}$. Thus in a partial 2-entry latin square each symbol appears at most twice in a row and column, and each cell contains at most two symbols. Avoiding a partial 2-entry latin square is tantamount to avoiding a pair of partial latin squares. Our chief methodology to show that a partial 2-entry latin square is avoidable (or unavoidable) is to show that its column/symbol-conjugate is avoidable (or unavoidable). Thus it is important to note that the column/symbol-conjugate of a partial 2-entry latin square of order 4 on the symbol set $\{1, 2\}$ is a partial 4×2 2-entry latin square on the symbol set $\{1, 2, 3, 4\}$. Figure 3 contains an example of this.

			12		4	4
	12	2			2	23
12		1			13	1
1	2]	1	2

Figure 3: Partial 2-entry latin square and its column/symbol-conjugate respectively.

Results of Chetwynd and Rhodes [4], Cavenagh [2], and Ohman [5], show that every partial latin square of order at least 4 is avoidable. As noted above, we ask for which pairs of partial latin squares of order 4 are avoidable. In this way we continue work begun in [3] on avoiding 2-entry arrays. It is worth noting that for more general 2-entry arrays, Casselgren proved that avoiding such arrays is NP-complete, even in the case when only two distinct symbols occur [1].

2 Main Result

We use \mathcal{P}_4 to denote the set of partial 2-entry latin squares of order 4 on the symbol set $\{1, 2\}$ and we use $\mathcal{P}_{4\times 2}$ to denote the set of column/symbol-conjugates of elements in \mathcal{P}_4 . We present the following propositions without proof, as their proofs are trivial.

Proposition 1 Let $P \in \mathcal{P}_{4\times 2}$ such that $(i, j, a), (i, j, b), (k, j, a), (k, j, b) \in P$ for some $a, b, i, k \in [4]$ and $j \in [2]$. Then P is avoidable.

3	2		
2	3	23	23
13	13	13	13
12	12	12	12

Figure 4: Arrays Q_1 and Q_2 respectively

Proposition 2 The arrays Q_1 and Q_2 in Figure 1 are unavoidable.

We use the notation \mathcal{Q} for the set

 $\{P \in \mathcal{P}_{4 \times 2} : P \text{ contains an isotope and/or row/symbol-conjugate of } Q_1 \text{ or } Q_2\}.$

The main theorem in this section shows that Q contains all the unavoidable partial 4×2 2entry latin rectangles on [4]. The process by which we show this is described in the following paragraph.

Let $P \in \mathcal{P}_{4\times 2}$. We attempt to construct a 4×2 latin rectangle that avoids P in the following manner. Extract an array $P_1 \in \mathcal{P}_{4\times 2}$ from P such that $P_1 \subseteq P$ and there is a latin rectangle L_1 that avoids P_1 . If L_1 avoids P, then we are done. Otherwise determine which entries in P preclude L_1 from avoiding P and thereby construct $P_2 \in \mathcal{P}_{4\times 2}$ such that $P_1 \subseteq P_2 \subseteq P$ where P_2 has exactly one more symbol than P_1 , and L_1 does not avoid P_2 . Now construct a latin rectangle L_2 that avoids P_2 . If L_2 avoids P, then we are done. Otherwise determine which entries in P preclude L_2 from avoiding P and thereby construct $P_3 \in \mathcal{P}_{4\times 2}$ such that $P_1 \subseteq P_2 \subseteq P_3 \subseteq P$ where P_3 contains exactly one more symbol than P_2 , and L_2 does not avoid P_3 . Now construct a latin rectangle L_3 that avoids P_3 . Continue this process until there is an integer m such that either L_m avoids P or $P_m \in \mathcal{Q}$. We express the above process symbolically as

$$P_1 \subseteq P_2 \subseteq \ldots \subseteq P_m$$
$$L_1 , L_2 , \ldots, L_m$$

If, in the sequence L_1, L_2, \ldots, L_m , a partial latin rectangle is given instead of a latin rectangle, we mean for the reader to understand that there are completions of the partial latin rectangle that avoid the corresponding partial 2-entry latin rectangle. In the next two proofs, when we add symbols to P, we add such that P remains a partial 4×2 2-entry latin rectangle. Certainly if P with symbols added is avoidable, then P with no symbols added is avoidable.

Lemma 1 Let $a, b \in [4], i, j \in [2]$, and $P \in \mathcal{P}_{4 \times 2}$ such that

$$(i, j, a), (i, j + 1, a), (i, j, b), (i, j + 1, b) \in P.$$

If $P \notin \mathcal{Q}$, then P is avoidable.

PROOF: Suppose that $P \notin \mathcal{Q}$. Without loss of generality we may assume that i = 4 in the statement of the lemma. Because there are 6 possible entries in each column of P outside of row 4, we may add symbols a and b so that both appear 4 times in P. By Proposition 1 we may further assume that $(1, 1, a), (2, 1, b) \in P$. Then P contains one of the following arrays, denoted (1), (2), (3), (4), (5), and (6) respectively.

a		a	b	a		a	b	a	a	a	a
b	b	b		b	a	b	a	b	b	b	
	a		a		b						b
ab											

Note that (1) and (6), and (2) and (3) are isotopic. So to prove that P is aviodable, we avoid each of (1), (2), (4), and (5). Without loss of generality suppose that a = 1 and b = 2.

Consider $(1) \subseteq P$. If $(3, 2, 3), (3, 2, 4) \notin P$, then we add either symbol 3 or 4 to cell (3, 2). Without loss of generality, $(3, 2, 3) \in P$. (Note that L_1 below contains empty cells. Either $(1, 2, 3), (2, 2, 1) \in L_1$ or $(1, 2, 1), (2, 2, 3) \in L_1$, depending on where symbol 3 appears in column 2 of P_1 .)

$\begin{array}{c c} 1 \\ 2 \\ \end{array}$	2 13	Ē	1 24	2 13		1 24	24 13		1 24	4 24 13		$\begin{array}{c}1\\24\\4\end{array}$	4 24 13
12	$\frac{13}{12}$		12	12	ļ	12	13		12	13		4 12	13
$\frac{2}{4}$			$\begin{array}{c} 2\\ 3 \end{array}$	1 4		$\begin{array}{ c c }\hline 2\\\hline 3\\\hline \end{array}$	4		$\begin{array}{ c c }\hline 2\\ \hline 1 \end{array}$	1 3			
$\frac{1}{3}$	24		$\frac{1}{4}$	2 3		$\frac{1}{4}$	2 3]	$\frac{4}{3}$	2 4]		

But then P contains an isotope of Q_1 . In this case P is avoidable. Consider $(2) \subseteq P$. As in the previous case, $(3, 2, 3) \in P$.

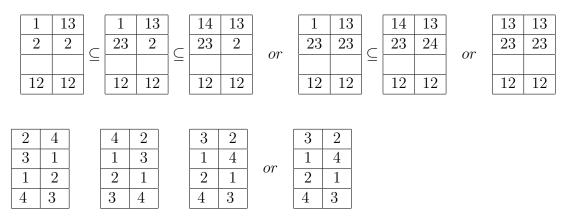
1	2	1	2]	1	2
2		2		∣⊆	23	
	13	3	13] =	3	13
12	12	12	12		12	12
						-
2	1	2	1		3	1
1	2	3	2		1	2
3	4	1	4		2	4
4	3	4	3		4	3

Consider (4) $\subseteq P$. We assume, without loss of generality, that $(1, 2, 3) \in P$.

1	23		13	23]	13	23]	13	23		13	23]	13	23]	13	23	13	23
2	1		2	1		2	1		2	1		2	1		2	1		2	14	24	14
] =				3			3	3		3	34		34	34		34	34	34	34
12	12		12	12]	12	12]	12	12]	12	12]	12	12]	12	12	12	12
		Г			Г		-	Ē		-									7		
3	4		2	4		4	1		2	1		$2 \mid 1$	L	2	2 1		2				
1	2		1	2		1	2		3	2		1 :	3	3	$3 \mid 4$		4	3			
2	1		3	1	Γ	2	3	Γ	1	4		4 2	2	1	2		1	2			
4	3		4	3		3	4		4 3	3	e e	3 4	:	4	3		3	4			

The last partial 2-entry array is an isotope of the row/symbol-conjugate of Q_1 . So P, in this case, is avoidable.

Finally consider $(5) \subseteq P$. As in the previous case, $(1, 2, 3) \in P$.



Thus P is avoidable since $P \notin \mathcal{Q}$.

Theorem 1 Let $P \in \mathcal{P}_{4 \times 2}$. If $P \notin \mathcal{Q}$, then P is avoidable.

PROOF: We add as many symbols as possible to P. By Lemma 1, if there is a row in P containing two symbols twice, then P is avoidable. So we assume that P contains no such row.

Case 1: There is a pair of symbols $\{a, b\}$ such that both a and b appear 4 times in P and there is exactly one cell containing both a and b.

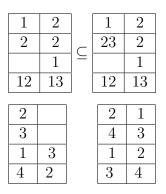
Without loss of generality we will assume that

$$\{(4,1,a), (4,1,b), (1,1,a), (2,1,b)\} \subseteq P.$$

It follows that P contains one of the following arrays denoted (1), (2), (3), (4), (5), and (6) respectively.

a	b	a	b	a	a	a	b		a	a	a	a
b	b	b	a	b	b	b	a]	b	b	b	a
	a		b		b		a			a		b
ab	a	ab	a	ab	a	ab	b]	ab	b	ab	b

Note that (1) and (6), (2) and (4), and (3) and (5) are isotopic. Without loss of generality, assume that a = 1 and b = 2 and that $(4, 2, 3) \in P$. Consider $(1) \subseteq P$.



Next, consider $(2) \subseteq P$.

1	2		14	2
2	1		2	1
	2	\subseteq	4	2
12	13		12	13
4			3	
1	2		1	3
2			2	
3	4		4	2

Finally, consider (3) $\subseteq P$.

1	1	14	1		1	1	14	1		1	14
2	2	2	2	or	2	23	2	23	or	2	23
	2		2	or		2		2	or		2
12	13	12	13		12	13	12	13		12	13
		 		_ `			 				
4	2	3	4		2	4	2	4		4	3
1	3	1	3		3	1	3	1		1	4
2	1	2	1	or	1	3	1	3	or	2	1
3	4	4	2]	4	2	4	2]	3	2

Case 2: For each pair of symbols $\{a, b\}$, a or b appears at most 3 times in P or there are two cells in P containing both a and b.

In this case P can not be completed to a 4×2 2-entry latin rectangle. There is a column, say column 1, and a symbol, say symbol 4, of P such that symbol 4 can not appear twice in column 1. Then column 1 of P is isotopic to the partial 4×1 2-entry latin rectangle in Figure 5. So without loss of generality, we assume that column 1 of P is the array in Figure 5.

12
13
23
4

Figure 5: Column 1 of P.

Of the symbols 1, 2, and 3, two of them must each appear twice in column 2 of P. Without loss of generality, suppose these two symbols are 1 and 2. By Case 1, P contains one of the following arrays denoted (1), (2), and (3) respectively. Note that either $(1, 2, 1) \notin P$ or $(1, 2, 2) \notin P$. We will assume that $(1, 2, 2) \notin P$.

12	12	12
23 12	23	23
13	13 12	13
4	4	4 12

Note that (1) and (2) are isotopic. Consider $(1) \subseteq P$.

12 23 13	12	12 23 13	12 4	12 23 13	12 34	\subseteq	12 23 13	12 34
4		4	1	4	01		4	4
4		4		4	2		3	2
1	3	1	4	1	3		1	4
2	4	2	3	2	1		4	1
3		3		3	4		2	3

And consider $(3) \subseteq P$.

12		12		12		12	23
23		23		23		23	
13		13	3	13	34	13	34
4	12	4	12	4	12	4	12

3		3		4		3	4
4		4		1		4	2
2	3	2	4	2	1	2	1
1	4	1	3	3	4	1	3

Consider the arrays Q_1 and Q_2 in Figure 1. The 4×4 arrays $Q_1^* = \{(i, k, j) : (i, j, k) \in Q_1\}$ and $Q_2^* = \{(i, k, j) : (i, j, k) \in Q_2\}$ are given in Figure 6. Because Q_1 and Q_2 are unavoidable, Q_1^* and Q_2^* are unavoidable. We use Q^* to denote the set

 $\{P \in \mathcal{P}_4: P \text{ contains an isotope of } Q_1^* \text{ or } Q_2^*\}$

	2	1					
	1	2			12	12	
12		12		12		12	
12	12			12	12		

Figure 6: Arrays Q_1^* and Q_2^* respectively

Corollary 1 The set Q^* contains all the unavoidable partial 2-entry latin squares of order 4 on the symbol set $\{1, 2\}$.

References

- Casselgren, C.J.: On avoiding some families of arrays. Discrete Math. 312, 963-972 (2012)
- [2] Cavenagh, N.: Avoidable partial latin squares of order 4m + 1. Ars Combin. 95, 257-275 (2010)
- [3] Chetwynd, A.G., Rhodes, S.J.: Avoiding multiple entry arrays. J. Graph Theory 25, 257-266 (1997)
- [4] Chetwynd, A.G., Rhodes, S.J.: Avoiding partial Latin squares and intricacy. Discrete Math. 177, 17-32 (1997)
- [5] Ohman, L.-D.: Partial latin squares are avoidable. Ann. Comb. 15, 485-497 (2011)