Unavoidable pairs of partial latin squares of order four

Jaromy Kuhl Hannah Hinojosa

Abstract

This technical report characterizes unavoidable pairs of partial latin squares of order 4 on two symbols.

1 Introduction

A partial latin square of order n is an $n \times n$ array of n distinct symbols in which each symbol occurs at most once in each row and column. If there are no empty cells, then the array is called a latin square. It is useful to think of a partial latin square P as a set of ordered triples, where $(i, j, k) \in P$ if and only if symbol k appears in cell (i, j) of P (see Figure 1).

	1	2	
2		1	
1	2		

Figure 1: $P=\{(2,2,1),(2,3,2),(3,1,2),(3,3,1),(4,1,1),(4,2,2)\}$.
We say that P is avoidable if for each set of n symbols, there exists a latin square L such that if $(i, j, k) \in P$, then $(i, j, k) \notin L$. Unless otherwise stated, we will assume that the symbol set is $\{1,2, \ldots, n\}$. We say that a pair of partial latin squares $\left\{P_{1}, P_{2}\right\}$ is avoidable if there is a latin square L that avoids P_{1} and P_{2} simultaneously. In this paper we characterize the unavoidable pairs of partial latin squares of order 4 on two symbols.

A conjugate of P is an array made by uniformly permuting the coordinates in each of the elements of P. The column/symbol-conjugate of P is an array where the second and third coordinates of each triple are exchanged. An isotope of P is an array formed by relabeling the rows and/or columns and/or symbols of P. The arrays in Figure 2 are examples of an isotope and the column/symbol-conjugate of a given partial latin square.

The following observations are well-known and used throughout this paper.

* $\quad P$ is avoidable if and only if a conjugate of P is avoidable.
* $\quad P$ is avoidable if and only if an isotope of P is avoidable.

			1					
	1	2						
2		1						
1	2					1	2	1
:---	:---	:---	:---					
			1					
2		1						
1	2				4			
:---	:---							
2	3							
3	1							
1	2							

Figure 2: Partial latin square P, an isotope of P (row 1 and row 2 are interchanged) and the column/symbol-conjugate of P respectively.

Let P_{1} and P_{2} be partial latin squares of order 4 on the symbol set $\{1,2\}$ (i.e. symbols 3 and 4 do not appear in P_{1} and P_{2}). The array formed by superimposing P_{1} onto P_{2} is called a partial 2-entry latin square of order 4 on the symbol set $\{1,2\}$. Thus in a partial 2 -entry latin square each symbol appears at most twice in a row and column, and each cell contains at most two symbols. Avoiding a partial 2-entry latin square is tantamount to avoiding a pair of partial latin squares. Our chief methodology to show that a partial 2-entry latin square is avoidable (or unavoidable) is to show that its column/symbol-conjugate is avoidable (or unavoidable). Thus it is important to note that the column/symbol-conjugate of a partial 2-entry latin square of order 4 on the symbol set $\{1,2\}$ is a partial 4×2 2-entry latin square on the symbol set $\{1,2,3,4\}$. Figure 3 contains an example of this.

			12
	12	2	
12		1	
1	2		

4	4
2	23
13	1
1	2

Figure 3: Partial 2-entry latin square and its column/symbol-conjugate respectively.
Results of Chetwynd and Rhodes [4], Cavenagh [2], and Öhman [5], show that every partial latin square of order at least 4 is avoidable. As noted above, we ask for which pairs of partial latin squares of order 4 are avoidable. In this way we continue work begun in [3] on avoiding 2-entry arrays. It is worth noting that for more general 2-entry arrays, Casselgren proved that avoiding such arrays is $N P$-complete, even in the case when only two distinct symbols occur [1].

2 Main Result

We use \mathcal{P}_{4} to denote the set of partial 2-entry latin squares of order 4 on the symbol set $\{1,2\}$ and we use $\mathcal{P}_{4 \times 2}$ to denote the set of column/symbol-conjugates of elements in \mathcal{P}_{4}. We present the following propositions without proof, as their proofs are trivial.

Proposition 1 Let $P \in \mathcal{P}_{4 \times 2}$ such that $(i, j, a),(i, j, b),(k, j, a),(k, j, b) \in P$ for some $a, b, i, k \in$ [4] and $j \in[2]$. Then P is avoidable.

3	2
2	3
13	13
12	12

23	23
13	13
12	12

Figure 4: Arrays Q_{1} and Q_{2} respectively
Proposition 2 The arrays Q_{1} and Q_{2} in Figure 1 are unavoidable.
We use the notation \mathcal{Q} for the set

$$
\left\{P \in \mathcal{P}_{4 \times 2}: P \text { contains an isotope and/or row/symbol-conjugate of } Q_{1} \text { or } Q_{2}\right\}
$$

The main theorem in this section shows that \mathcal{Q} contains all the unavoidable partial 4×2 2entry latin rectangles on [4]. The process by which we show this is described in the following paragraph.

Let $P \in \mathcal{P}_{4 \times 2}$. We attempt to construct a 4×2 latin rectangle that avoids P in the following manner. Extract an array $P_{1} \in \mathcal{P}_{4 \times 2}$ from P such that $P_{1} \subseteq P$ and there is a latin rectangle L_{1} that avoids P_{1}. If L_{1} avoids P, then we are done. Otherwise determine which entries in P preclude L_{1} from avoiding P and thereby construct $P_{2} \in \mathcal{P}_{4 \times 2}$ such that $P_{1} \subseteq P_{2} \subseteq P$ where P_{2} has exactly one more symbol than P_{1}, and L_{1} does not avoid P_{2}. Now construct a latin rectangle L_{2} that avoids P_{2}. If L_{2} avoids P, then we are done. Otherwise determine which entries in P preclude L_{2} from avoiding P and thereby construct $P_{3} \in \mathcal{P}_{4 \times 2}$ such that $P_{1} \subseteq P_{2} \subseteq P_{3} \subseteq P$ where P_{3} contains exactly one more symbol than P_{2}, and L_{2} does not avoid P_{3}. Now construct a latin rectangle L_{3} that avoids P_{3}. Continue this process until there is an integer m such that either L_{m} avoids P or $P_{m} \in \mathcal{Q}$. We express the above process symbolically as

$$
\begin{gathered}
P_{1} \subseteq P_{2} \subseteq \ldots \subseteq P_{m} \\
L_{1}, L_{2}, \ldots, L_{m}
\end{gathered}
$$

If, in the sequence $L_{1}, L_{2}, \ldots, L_{m}$, a partial latin rectangle is given instead of a latin rectangle, we mean for the reader to understand that there are completions of the partial latin rectangle that avoid the corresponding partial 2-entry latin rectangle. In the next two proofs, when we add symbols to P, we add such that P remains a partial 4×2 2-entry latin rectangle. Certainly if P with symbols added is avoidable, then P with no symbols added is avoidable.

Lemma 1 Let $a, b \in[4], i, j \in[2]$, and $P \in \mathcal{P}_{4 \times 2}$ such that

$$
(i, j, a),(i, j+1, a),(i, j, b),(i, j+1, b) \in P
$$

If $P \notin \mathcal{Q}$, then P is avoidable.

Proof: Suppose that $P \notin \mathcal{Q}$. Without loss of generality we may assume that $i=4$ in the statement of the lemma. Because there are 6 possible entries in each column of P outside of row 4, we may add symbols a and b so that both appear 4 times in P. By Proposition 1 we may further assume that $(1,1, a),(2,1, b) \in P$. Then P contains one of the following arrays, denoted (1), (2), (3), (4), (5), and (6) respectively.

a	
b	b
	a
$a b$	$a b$

a	b
b	
	a
$a b$	$a b$

a	
b	a
	b
$a b$	$a b$

a	b
b	a
$a b$	$a b$

a	a
b	b
$a b$	$a b$

a	a
b	
	b
$a b$	$a b$

Note that (1) and (6), and (2) and (3) are isotopic. So to prove that P is aviodable, we avoid each of (1), (2), (4), and (5). Without loss of generality suppose that $a=1$ and $b=2$.

Consider (1) $\subseteq P$. If $(3,2,3),(3,2,4) \notin P$, then we add either symbol 3 or 4 to cell $(3,2)$. Without loss of generality, $(3,2,3) \in P$. (Note that L_{1} below contains empty cells. Either $(1,2,3),(2,2,1) \in L_{1}$ or $(1,2,1),(2,2,3) \in L_{1}$, depending on where symbol 3 appears in column 2 of P_{1}.)

1				
2	2			
	13			
12	12	\subseteq	1	
:---:	:---:			
24	2			
	13			
12	12	\subseteq	1	
:---:	:---:			
24	24			
	13			
12	12	\subseteq	1	4
:---:	:---:			
24	24			
	13			
12	12	\subseteq	1	4
:---:	:---:			
24	24			
4	13			
12	12			

2	
4	
1	2
3	4

2	1
3	4
1	2
4	3

2	4
3	1
1	2
4	3

2	1
1	3
4	2
3	4

But then P contains an isotope of Q_{1}. In this case P is avoidable.
Consider $(2) \subseteq P$. As in the previous case, $(3,2,3) \in P$.

1	2			
2				
	13			
12	12	\subseteq	1	2
:---:	:---:			
2				
3	13			
12	12	\subseteq	1	2
:---:	:---:			
23				
3	13			
12	12			

2	1
1	2
3	4
4	3

2	1
3	2
1	4
4	3

3	1
1	2
2	4
4	3

Consider (4) $\subseteq P$. We assume, without loss of generality, that $(1,2,3) \in P$.

1	23			
2	1			
12	12	\subseteq	13	23
:---:	:---:			
2	1			
12	12	\subseteq	13	23
:---:	:---:			
2	1			
3				
12	12	\subseteq	13	23
:---:	:---:	:---:		
2	1			
3	3			
12	12	\subseteq	13	23
:---:	:---:	:---:		
2	1			
3	34			
12	12	\subseteq	13	23
:---:	:---:	:---:		
2	1			
34	34			
12	12	\subseteq	13	23
:---:	:---:	:---:	:---:	
2	14			
34	34			
12	12	\subseteq	13	23
:---:	:---:	:---:		
24	14			
34	34			
12	12			

3	4
1	2
2	1
4	3

2	4
1	2
3	1
4	3

4	1
1	2
2	3
3	4

2	1
3	2
1	4
4	3

2	1
1	3
4	2
3	4

2	1
3	4
1	2
4	3

2	1
4	3
1	2
3	4

The last partial 2-entry array is an isotope of the row/symbol-conjugate of Q_{1}. So P, in this case, is avoidable.

Finally consider $(5) \subseteq P$. As in the previous case, $(1,2,3) \in P$.

1	13	\subseteq	1	13	\subseteq	14	13	or	1	13	\subseteq	14	13	or	13	13
2	2		23	2		23	2		23	23		23	24		23	23
12	12		12	12		12	12		12	12		12	12		12	12

2	4
3	1
1	2
4	3

4	2
1	3
2	1
3	4

3	2
1	4
2	1
4	3

3	2
1	4
2	1
4	3

Thus P is avoidable since $P \notin \mathcal{Q}$.

Theorem 1 Let $P \in \mathcal{P}_{4 \times 2}$. If $P \notin \mathcal{Q}$, then P is avoidable.
Proof: We add as many symbols as possible to P. By Lemma 1, if there is a row in P containing two symbols twice, then P is avoidable. So we assume that P contains no such row.

Case 1: There is a pair of symbols $\{a, b\}$ such that both a and b appear 4 times in P and there is exactly one cell containing both a and b.

Without loss of generality we will assume that

$$
\{(4,1, a),(4,1, b),(1,1, a),(2,1, b)\} \subseteq P
$$

It follows that P contains one of the following arrays denoted (1), (2), (3), (4), (5), and (6) respectively.

a	b
b	b
	a
$a b$	a

a	b
b	a
	b
$a b$	a

a	a
b	b
	b
$a b$	a

a	b
b	a
	a
$a b$	b

a	a
b	b
	a
$a b$	b

a	a
b	a
	b
$a b$	b

Note that (1) and (6), (2) and (4), and (3) and (5) are isotopic. Without loss of generality, assume that $a=1$ and $b=2$ and that $(4,2,3) \in P$. Consider $(1) \subseteq P$.

1	2			
2	2			
	1			
12	13	\subseteq	1	2
:---:	:---:			
23	2			
	1			
12	13			

2	
3	
1	3
4	2

2	1
4	3
1	2
3	4

Next, consider $(2) \subseteq P$.

1	2			
2	1			
	2			
12	13	\subseteq	14	2
:---:	:---:			
2	1			
4	2			
12	13			

4	
1	2
2	
3	4

3	
1	3
2	
4	2

Finally, consider $(3) \subseteq P$.

1	1
2	2
	2
12	13

\subseteq| 14 | 1 |
| :---: | :---: |
| 2 | 2 |
| | 2 |
| 12 | 13 | or

1	1			
2	23			
	2			
12	13	\subseteq	14	1
:---:	:---:			
2	23			
	2			
12	13	or	1	14
:---:	:---:			
2	23			
	2			
12	13			

4	2
1	3
2	1
3	4

3	4
1	3
2	1
4	2

2	4
3	1
1	3
4	2

2	4			
3	1			
1	3			
4	2	or	4	3
:---:	:---:			
1	4			
2	1			
3	2			

Case 2: For each pair of symbols $\{a, b\}, a$ or b appears at most 3 times in P or there are two cells in P containing both a and b.

In this case P can not be completed to a 4×2 2-entry latin rectangle. There is a column, say column 1, and a symbol, say symbol 4 , of P such that symbol 4 can not appear twice in column 1. Then column 1 of P is isotopic to the partial 4×12-entry latin rectangle in Figure 5. So without loss of generality, we assume that column 1 of P is the array in Figure 5.

Figure 5: Column 1 of P.
Of the symbols 1,2 , and 3 , two of them must each appear twice in column 2 of P. Without loss of generality, suppose these two symbols are 1 and 2 . By Case $1, P$ contains one of the following arrays denoted (1), (2), and (3) respectively. Note that either $(1,2,1) \notin P$ or $(1,2,2) \notin P$. We will assume that $(1,2,2) \notin P$.

12	
23	12
13	
4	

12	
23	
13	12
4	

12	
23	
13	
4	12

Note that (1) and (2) are isotopic. Consider (1) $\subseteq P$.

12				
23	12			
13				
4			12	
:---:	:---:			
23	12			
13	4			
4		\subseteq	12	
:---:	:---:			
23	12			
13	34			
4		\subseteq	12	
:---:	:---:			
23	12			
13	34			
4	4			

4	
1	3
2	4
3	

4	
1	4
2	3
3	

4	2
1	3
2	1
3	4

3	2
1	4
4	1
2	3

And consider $(3) \subseteq P$.

12				
23				
13				
4	12	\subseteq	12	
:---:	:---:			
23				
13	3			
4	12	\subseteq	12	
:---:	:---:			
23				
13	34			
4	12	\subseteq	12	23
:---:	:---:			
23				
13	34			
4	12			

3				
4				
2	3			
1	4	\quad	3	
:---	:---			
4				
2	4			
1	3	\quad	4	
:---:	:---:			
1				
2	1			
3	4	\quad	3	4
:---:	:---:			
4	2			
2	1			
1	3			

Consider the arrays Q_{1} and Q_{2} in Figure 1. The 4×4 arrays $Q_{1}^{*}=\left\{(i, k, j):(i, j, k) \in Q_{1}\right\}$ and $Q_{2}^{*}=\left\{(i, k, j):(i, j, k) \in Q_{2}\right\}$ are given in Figure 6. Because Q_{1} and Q_{2} are unavoidable, Q_{1}^{*} and Q_{2}^{*} are unavoidable. We use \mathcal{Q}^{*} to denote the set

$$
\left\{P \in \mathcal{P}_{4}: P \text { contains an isotope of } Q_{1}^{*} \text { or } Q_{2}^{*}\right\}
$$

	2	1	
	1	2	
12		12	
12	12		

	12	12	
12		12	
12	12		

Figure 6: Arrays Q_{1}^{*} and Q_{2}^{*} respectively

Corollary 1 The set \mathcal{Q}^{*} contains all the unavoidable partial 2-entry latin squares of order 4 on the symbol set $\{1,2\}$.

References

[1] Casselgren, C.J.: On avoiding some families of arrays. Discrete Math. 312, 963-972 (2012)
[2] Cavenagh, N.: Avoidable partial latin squares of order $4 m+1$. Ars Combin. 95, 257-275 (2010)
[3] Chetwynd, A.G., Rhodes, S.J.: Avoiding multiple entry arrays. J. Graph Theory $25,257-266$ (1997)
[4] Chetwynd, A.G., Rhodes, S.J.: Avoiding partial Latin squares and intricacy. Discrete Math. 177, 17-32 (1997)
[5] Öhman, L.-D.: Partial latin squares are avoidable. Ann. Comb. 15, 485-497 (2011)

