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Abstract

We present a piecewise formula for the competition numbers of the complete tri-
partite graphs. For positive integers x, y and z where 2 ≤ x ≤ y ≤ z, the competition
number of the complete tripartite graph Kx,y,z is yz − z − y − x + 3 whenever x 6= y
and yz − 2y − z + 4 otherwise.

1 Introduction

In this note we consider competition graphs as introduced by Cohen in [1] and we consider
a problem left open by Kim and Sano in [3]. Let D be a digraph with vertex set V and
arc set A. If u, v ∈ V have a common out-neighbor in D, then u and v are said to be in
competition. The simple graph (V,E) in which edge set E is defined as

E = {{u, v} : u and v are in competition in D}

is called the competition graph of D and is denoted C(D). Given the applicative nature
of competition graphs (one example is that V represents a set of organisms in a food-web
and competition is defined by organisms competing for food), it is important to ask which
graphs are competition graphs of acyclic digraphs. In [8], Roberts observed that for any
graph G and for a sufficiently large integer k, G ∪ Ik is the competition graph of an acyclic
digraph, where Ik denotes the graph on k isolated vertices. The minimum such k is called
the competition number of G. Formally, the competition number of G is

k(G) = min{k : G ∪ Ik = C(D) in which D is an acyclic digraph}.

In general, the problem of computing k(G) is NP-hard [5]. So to reduce generality, G
will belong to the class of complete multipartite graphs. The following theorems are what is
currently known concerning the competition numbers of compete multipartite graphs.
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Theorem 1.1 The competition number of the complete bipartite graph Kn1,n2 is n1n2−n1−
n2 + 2.

Theorem 1.1 is a corollary of the statement that if G is a triangle-free connected graph,
then k(G) = |E(G)|−|V (G)|+2. Recently, Kim and Sano [3] found the competition number
of the complete tripartite graph Kn,n,n.

Theorem 1.2 The competition number k(K3
n) is n2 − 3n+ 4.

We extend Kim and Sano’s result to complete tripartite graphs in which the partite sets
may not have equal size. We prove the following formula:

Theorem 1.3 For positive integers x, y and z where 2 ≤ x ≤ y ≤ z,

k(Kx,y,z) =

{
yz − 2y − z + 4, if x = y

yz − z − y − x+ 3, if x 6= y

Some progress has been made on competition numbers of the complete tetrapartite graph
K4

n [4] and, more generally, the complete multipartite graph Km
n [4].

Theorem 1.4 If n ≥ 5 is odd, then

n2 − 4n+ 7 ≤ k(K4
n) ≤ n2 − 4n+ 8.

Theorem 1.5 If n is prime and m ≤ n, then

k(Km
n ) ≤ n2 − 2n+ 3.

Park et al. [7] give bounds for the general case with respect to L(n), the largest size of
a family of mutually orthogonal latin squares of order n.

Theorem 1.6 If m and n are positive integers such that 3 ≤ m ≤ L(n) + 2, then

k(Km
n ) ≤ n2 − n+ 1.

For small values of n, Park et al. [6] found the following competition numbers.

Theorem 1.7 If m ≥ 2, then k(Km
2 ) = 2 and if m ≥ 3, then k(Km

3 ) = 4.

While we do not do so in this paper, it would be interesting to study the competition
number of Kn1,n2,n3,n4 since very little is currently known. Furthermore, there remains much
to be known on computing the competition number k(Km

n ).
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2 Edge clique covers of Kx,y,z

Let U = {u1, . . . , ux}, V = {v1, . . . , vy}, and W = {w1, . . . , wz} be the vertex partition sets
of Kx,y,z where 2 ≤ x ≤ y ≤ z. We use ∆(i, j, k) to denote the clique induced on the vertex
set {ui, vj, wk} and we use ∆(j, k) to denote the clique induced on the vertex set {vj, wk}.
Note that a clique of order 3 is the largest clique in Kx,y,z.

Competition numbers can be computed by first finding a minimal edge clique cover.
Let S = {S1, . . . , Sm} be a family of cliques in a graph G; i.e. the subgraph induced on
Si ⊆ V (G) is complete for each i ∈ [m]. The family S is called an edge clique cover of G
provided {u, v} ∈ E(G) if and only if {u, v} ⊆ Si for some i ∈ [m]. The edge clique cover
number of G, denoted θe(G), is

θe(G) = min{|S| : S is an edge clique cover of G}.

Certainly, for any graph G, k(G) ≤ θe(G). Indeed, if θe(G) = k, then each vertex of a clique
in G can be directed to a vertex of Ik in the digraph D.

We find a minimal edge clique cover of Kx,y,z using r-semi latin squares. An r-semi
latin square of order n is an n × n array such that each element (or symbol) from the set
S = {s1, s2, . . . , snr} appears in each row and each column, and each cell contains r elements.
If we label the rows and columns with sets R = {r1, r2, . . . , rn} and C = {c1, c2, . . . , cn}
respectively, we may think of an r-semi latin square as a set of ordered triples (ri, cj, sk),
where symbol sk appears at the intersection of row ri and column cj. Where convenient, we
use the notation cj ◦ sk to denote the row containing symbol sk in column cj.

Henceforth q and r are positive integers such that z = qy+ r, where 0 ≤ r < y. Let L be
a (q + 1)-semi latin square of order y on the symbol set S = {s1, . . . , s(q+1)y}. Furthermore,
let R′ = {r′1, . . . , r′x} ⊆ R be a set of x rows and let S ′ = {s′1, . . . , s′z} ⊆ S be a set of z
symbols. We use

L(R′, C, S ′) = {(r′i, cj, s′k) : (r′i, cj, s
′
k) ∈ L, r′i ∈ R′, s′k ∈ S ′}

to denote the x×y array on symbol set S ′ induced by the intersection of rows R′ and columns
C. Note that the family F , defined below, is a subset of an edge clique cover of Kx,y,z. In
fact, we will later show that F is a minimal edge clique cover of Kx,y,z.

F = {∆(i, j, k) : (r′i, cj, s
′
k) ∈ L(R′, C, S ′)}∪

{∆(j, k) : (cj ◦ sk, cj, sk) ∈ L(R \R′, C, S ′)} (1)

For an example of (1), consider K2,4,6. Since z = 6 and y = 4, q = 1. We use the
following 2-semi latin square of order 4 as L and set R′ = {r1, r4} and S ′ = {s1, . . . , s6},
where r′1 = r1, r

′
2 = r4 and s′i = si = i for 1 ≤ i ≤ 6.
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1,2 4,5 3,7 6,8
5,6 7,8 1,2 3,4
7,8 2,3 4,6 1,5
3,4 1,6 5,8 2,7

Then the rectangular array L(R′, C, S ′) is

1,2 4,5 3 6
3,4 1,6 5 2

The clique ∆(1, 1, 2) is included in F since (r′1, c1, s
′
2) ∈ L(R′, C, S ′). The same can be

said of ∆(2, 1, 3) since (r′2, c1, s
′
3) ∈ L(R′, C, S ′). Also, since (r2, c1, s

′
5) ∈ L(R \ R′, C, S ′),

∆(1, 5) ∈ F . The remaining members of F are given in the following family;

F = {∆(1, 1, 1),∆(1, 1, 2),∆(1, 2, 4),∆(1, 2, 5),∆(1, 3, 3),∆(1, 4, 6),

∆(2, 1, 3),∆(2, 1, 4),∆(2, 2, 1),∆(2, 2, 6),∆(2, 3, 5),∆(2, 4, 2),

∆(1, 5),∆(1, 6),∆(3, 1),∆(3, 2),∆(4, 3),∆(4, 4),∆(2, 2),

∆(2, 3),∆(3, 4),∆(3, 6),∆(4, 1),∆(4, 5)}

Lemma 2.1 The family F is an edge clique cover of Kx,y,z. Moreover, F is minimal and
θe(Kx,y,z) = yz.

Proof: First, we show that F is an edge clique cover of Kx,y,z. Let R′ = {r′1, . . . , r′x} ⊆ R
be a set of x rows and let S ′ = {s′1, . . . , s′z} be a set of z symbols in a (q+1)-semi latin square
L of order y. Consider the edge e = {ui, vj} in Kx,y,z, i ∈ [x] and j ∈ [y]. Let Si,j denote
the set of q + 1 symbols at the intersection of r′i and cj. If Si,j ∩ S ′ = ∅, then q + 1 ≤ q − r,
a contradiction as r ≥ 0. Therefore there is an integer k such that (r′i, cj, s

′
k) ∈ L(R′, C, S ′).

Thus the clique ∆(i, j, k) ∈ F covers the edge e.
Now set e = {ui, wj}, i ∈ [x] and j ∈ [z]. Since each symbol of S ′ appears in each row of

L(R′, C, S ′), there is an integer k such that (r′i, ck, s
′
j) ∈ L(R′, C, S ′). Hence ∆(i, k, j) ∈ F

covers e. Finally, set e = {vi, wj}, i ∈ [y] and j ∈ [z]. There is an integer k ∈ [y] so that
rk = ci ◦ s′j. If rk ∈ R′, then certainly e is covered by a clique of order three in F . Otherwise
rk ∈ R \R′ and ∆(i, j) covers e.

We finish the proof by showing that yz is a lower and upper bound for θe(Kx,y,z). Note
that there are yz edges of the form {v, w} where v ∈ V and w ∈ W . Furthermore, there
is no clique in Kx,y,z that contains two edges of the form {v, w}. It follows that at least yz
cliques are needed to cover the edges that contain end vertices in partitions V and W . Hence
θe(Kx,y,z) ≥ yz. To show that yz is an upper bound for θe(Kx,y,z), we need only to provide
an edge clique cover of Kx,y,z whose cardinality is yz. From above, F is an edge clique cover
of Kx,y,z. Since L contains precisely y2(q + 1) triples and since symbols from S \ S ′ appear
precisely y times in L, F is made of

y2(q + 1)− y(y(q + 1)− z) = yz
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triples. Hence θe(Kx,y,z) ≤ yz. Moreover, this shows that F is a minimal edge clique cover
of Kx,y,z. 2

To end this section we comment on a general minimal edge clique cover of Kx,y,z when
x = y.

Lemma 2.2 Let S be a minimal edge clique cover of Ky,y,z and let S, S ′ ∈ S. If |S∩S ′| = 2,
then S = {u, v, w} and S ′ = {u, v, w′} where u ∈ U , v ∈ V and w,w′ ∈ W .

Proof: We may assume that |S| = 3 for each S ∈ S. Let S, S ′ ∈ S such that |S∩S ′| = 2.
Since |S| = yz (by Lemma 2.1) and since no clique contains two edges of the form {v, w}, no
two cliques of S share an edge of the form {v, w} where v ∈ V and w ∈ W . Similarly, no two
cliques share an edge of the form {u,w} where u ∈ U and w ∈ W . Hence (S∪S ′)\(S∩S ′) ⊆
W . 2

3 Proof of main result

The following characterization of competition graphs [2] is used to show a lower bound for
k(Kx,y,z).

Theorem 3.1 A graph G is the competition graph of an acyclic digraph if and only if there
exists an ordering a1, . . . , an of the vertices of G and an edge clique cover {S1, . . . , Sn} of G
such that if ai ∈ Sj, then i < j.

An equivalent way of stating Theorem 3.1 is to say that there exists an ordering a1, . . . , an
of the vertices of G and an edge clique cover {S1, . . . , Sn} of G such that Si ⊆ {a1, . . . , ai−1}
for each i.

Theorem 3.2 For integers x, y and z where 2 ≤ x ≤ y ≤ z,

k(Kx,y,z) ≥ yz − z − y − x+ 3.

Moreover, if x = y, then
k(Ky,y,z) ≥ yz − 2y − z + 4.

Proof: Let k = k(Kx,y,z) and let D denote an acyclic digraph such that C(D) =
Kx,y,z ∪ Ik. Note that S is an edge clique cover of Kx,y,z if and only if S is an edge clique
cover of Kx,y,z ∪ Ik. Then, from Theorem 3.1, there is an ordering a1, . . . , ax+y+z+k of the
vertices of Kx,y,z ∪ Ik and an edge clique cover S = {S1, . . . , Sx+y+z+k} of Kx,y,z such that
Si ⊆ {a1, . . . , ai−1} for each i. We may assume that the order of each non empty clique in
S is three. Then S1 = S2 = S3 = ∅ and so, by Lemma 2.1, |S \ {S1, S2, S3}| ≥ yz. Hence
x+ y + z + k − 3 ≥ yz and so k ≥ yz − x− y − z + 3.
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Suppose now that x = y and that, for the sake of contradiction, k = yz−2y−z+3. Then
Si is non empty for each i ≥ 4, S4 = {a1, a2, a3} and S5 ⊂ {a1, a2, a3, a4}. So it must be
that |S4∩S5| = 2. Without loss of generality, assume that S5 = {a2, a3, a4}. By Lemma 2.2,
a1, a4 ∈ W . Let l ≥ 4 be the largest integer such that Sl+1 = {a2, a3, al} and al ∈ W . Then
Sl+2 = {a2, aj, al+1} or Sl+2 = {a3, aj, al+1}, j ∈ [l] \ {2, 3}. In either case |Sl+2 ∩ S1| = 2 or
|Sl+2 ∩ Sj+1| = 2. But al+1 ∈ U ∪ V , contradicting Lemma 2.2. Hence k ≥ yz − 2y − z + 4.

2

We now proceed to the main result. Henceforth L is a (q + 1)-semi latin square of
order y such that (ri, cj, sk) ∈ L if and only if i + j − 1 ≡ k mod y. Furthermore, we set
R′ = {r1, . . . , rx−1, ry} and S ′ = {s1, . . . , sz} where r′i = ri for i ∈ [x− 1], r′x = ry and s′i = si
for i ∈ [z]. For y = 5 and z = 13, the arrays below are L and L(R′, C, S ′) respectively.

1,6,11 2,7,12 3,8,13 4,9,14 5,10,15
2,7,12 3,8,13 4,9,14 5,10,15 1,6,11
3,8,13 4,9,14 5,10,15 1,6,11 2,7,12
4,9,14 5,10,15 1,6,11 2,7,12 3,8,13
5,10,15 1,6,11 2,7,12 3,8,13 4,9,14

1,6,11 2,7,12 3,8,13 4,9 5,10
2,7,12 3,8,13 4,9 5,10 1,6,11
5,10 1,6,11 2,7,12 3,8,13 4,9

Proof of Theorem 1.3. Case 1: x = y.

In this case r′i = ri for each i. We first order the vertices a1, . . . , a2y+z of Ky,y,z as

u1, v1, w1, u2, vy, wy, uy, v2, w2, uy−1, vy−1, wy−1, . . . , u3, v3, w3, wy+1, . . . , wz.

Note that all vertices of Ky,y,z appear in the vertex ordering. Next, we order 2y + z − 3
cliques of F in the following way. The first 6 cliques are ordered as

∆1 = {u1, v1, w1}, ∆2 = {u2, vy, w1}, ∆3 = {u1, vy, wy},

∆4 = {uy, v1, wy}, ∆5 = {uy, v2, w1}, ∆6 = {u1, v2, w2}

For 0 ≤ s ≤ y − 4, the next 3y − 9 cliques are given as

∆3s+7 = {uy−s−1, v2, wy−s},
∆3s+8 = {u2, vy−s−1, wy−s}, and

∆3s+9 = {u1, vy−s−1, wy−s−1}.
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Finally, for 0 ≤ s ≤ z − y − 1, the remaining z − y cliques are

∆3y−2+s = {u, v, wy+s+1},

where u ∈ U and v ∈ V are any vertices such that {u, v, wy+s+1} ∈ F .
Given the vertex and clique orderings above, we construct a digraph that shows that

yz − 2y − z + 4 is an upper bound for k(Ky,y,z). We must first note that

∆1 ∪∆2 ∪ . . . ∪∆i ⊆ {a1, a2, . . . , ai+3} (2)

for i ∈ [2y+ z− 3]. This follows from the fact that ∆1 = {a1, a2, a3}, ∆2 \∆1 = {a4, a5} and
∆i \ (∆1 ∪ . . . ∪∆i−1) = {ai+3}, where 3 ≤ i ≤ 2y + z − 3.

Since F is a minimal edge clique cover, there are yz − 2y − z + 3 cliques in F \
{∆1, . . . ,∆2y+z−3}. Set F \ {∆1, . . . ,∆2y+z−3} = {T1, . . . , Tyz−2y−z+3}. Let D be the di-
graph with the following vertex set V and arc set A;

V (D) ={a1, . . . , az+2y−3} ∪ {α0, . . . , αyz−2y−z+3}

A(D) =

2y+z−4⋃
i=1

{(δ, ai+4) : δ ∈ ∆i} ∪ {(δ, α0) : δ ∈ ∆2y+z−3}∪

yz−2y−z+3⋃
i=1

{(δ, αi) : δ ∈ Ti}.

From statement (2), the digraph D is acyclic. Because every clique in F has a common
out-neighbor in D, E(C(D)) ⊆ E(Ky,y,z). Moreover, the in-nighborhood of a vertex of D is
a clique in F . Therefore E(Ky,y,z) ⊆ E(Ky,y,z). It follows that C(D) = Ky,y,z ∪ Iyz−2y−z+4.
Hence, by Theorem 3.2,

k(Ky,y,z) = yz − 2y − z + 4.

Case 2: x < y.

In this case r′i = ri for each i ∈ [x− 1] and r′x = ry. As in the previous case, we begin by
ordering vertices and cliques in Kx,y,z. The vertex ordering a1, . . . , ax+y+z of Kx,y,z is

ux, v1, wy, v2, w1, u1, w2, u2, vy, wy−1, vy−1, . . . , wx, vx,

ux−1, vx−1, wx−1, . . . , u3, v3, w3, wy+1, . . . , wz.

Next, we order x+ y + z − 2 cliques of F . The first 7 cliques are ordered as

∆1 = {ux, v1, wy}, ∆2 = {v2, wy}, ∆3 = {ux, v2, w1},
∆4 = {u1, v1, w1}, ∆5 = {u1, v2, w2}, ∆6 = {u2, v1, w2}, ∆7 = {u2, vy, w1}

For 0 ≤ s ≤ y − x− 1, the next 2(y − x) cliques in the ordering are given as

∆2s+8 = {ux, vy−s, wy−s−1}, and

∆2s+9 = {u1, vy−s−1, wy−s−1}.
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For 0 ≤ s ≤ x− 4, the next 3x− 9 cliques are given as

∆3s+2(y−x)+8 = {ux−s−1, v2, wx−s},
∆3s+2(y−x)+9 = {u2, vx−s−1, wx−s}, and

∆3s+2(y−x)+10 = {u1, vx−s−1, wx−s−1}.

Finally, for 0 ≤ s ≤ z − y − 1, the remaining z − y cliques in the ordering are

∆2y+x−1+s = {u, v, wy+s+1},

where u ∈ U and v ∈ V are any vertices such that {u, v, wy+s+1} ∈ F .
In this case note that

∆1 ∪∆2 ∪ . . . ∪∆i ⊆ {a1, a2, . . . , ai+2} (3)

for i ∈ [z + y + x− 4]. Set F ′ \ {∆1, . . . ,∆z+y+x−4} = {T1, . . . , Tyz−z−y−x+4}. Let D be the
digraph with the following vertex set V and arc set A;

V (D) = {a1, . . . , az+y+x−4} ∪ {α0, . . . , αyz−z−y−x+2}

A(D) =

z+y+x−3⋃
i=1

{(δ, ai+3) : δ ∈ ∆i} ∪ {(δ, α0) : δ ∈ ∆z+y+x−4}∪

yz−z−y−x+2⋃
i=1

{(δ, αi) : δ ∈ Ti}.

It follows from statement (3) that D is acyclic. Furthermore C(D) = Kx,y,z∪Iyz−z−y−x+3.
Hence, by Theorem 3.2,

k(Kx,y,z) = yz − z − y − x+ 3.
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