Complete tripartite graphs and their competition numbers

Jaromy Kuhl*

Abstract

We present a piecewise formula for the competition numbers of the complete tripartite graphs. For positive integers x, y and z where $2 \leq x \leq y \leq z$, the competition number of the complete tripartite graph $K_{x, y, z}$ is $y z-z-y-x+3$ whenever $x \neq y$ and $y z-2 y-z+4$ otherwise.

1 Introduction

In this note we consider competition graphs as introduced by Cohen in [1] and we consider a problem left open by Kim and Sano in [3]. Let D be a digraph with vertex set V and arc set A. If $u, v \in V$ have a common out-neighbor in D, then u and v are said to be in competition. The simple graph (V, E) in which edge set E is defined as

$$
E=\{\{u, v\}: u \text { and } v \text { are in competition in } D\}
$$

is called the competition graph of D and is denoted $C(D)$. Given the applicative nature of competition graphs (one example is that V represents a set of organisms in a food-web and competition is defined by organisms competing for food), it is important to ask which graphs are competition graphs of acyclic digraphs. In [8], Roberts observed that for any graph G and for a sufficiently large integer $k, G \cup I_{k}$ is the competition graph of an acyclic digraph, where I_{k} denotes the graph on k isolated vertices. The minimum such k is called the competition number of G. Formally, the competition number of G is

$$
k(G)=\min \left\{k: G \cup I_{k}=C(D) \text { in which } D \text { is an acyclic digraph }\right\} .
$$

In general, the problem of computing $k(G)$ is NP-hard [5]. So to reduce generality, G will belong to the class of complete multipartite graphs. The following theorems are what is currently known concerning the competition numbers of compete multipartite graphs.

[^0]Theorem 1.1 The competition number of the complete bipartite graph $K_{n_{1}, n_{2}}$ is $n_{1} n_{2}-n_{1}-$ $n_{2}+2$.

Theorem 1.1 is a corollary of the statement that if G is a triangle-free connected graph, then $k(G)=|E(G)|-|V(G)|+2$. Recently, Kim and Sano [3] found the competition number of the complete tripartite graph $K_{n, n, n}$.

Theorem 1.2 The competition number $k\left(K_{n}^{3}\right)$ is $n^{2}-3 n+4$.
We extend Kim and Sano's result to complete tripartite graphs in which the partite sets may not have equal size. We prove the following formula:

Theorem 1.3 For positive integers x, y and z where $2 \leq x \leq y \leq z$,

$$
k\left(K_{x, y, z}\right)= \begin{cases}y z-2 y-z+4, & \text { if } x=y \\ y z-z-y-x+3, & \text { if } x \neq y\end{cases}
$$

Some progress has been made on competition numbers of the complete tetrapartite graph $K_{n}^{4}[4]$ and, more generally, the complete multipartite graph $K_{n}^{m}[4]$.

Theorem 1.4 If $n \geq 5$ is odd, then

$$
n^{2}-4 n+7 \leq k\left(K_{n}^{4}\right) \leq n^{2}-4 n+8 .
$$

Theorem 1.5 If n is prime and $m \leq n$, then

$$
k\left(K_{n}^{m}\right) \leq n^{2}-2 n+3
$$

Park et al. [7] give bounds for the general case with respect to $L(n)$, the largest size of a family of mutually orthogonal latin squares of order n.

Theorem 1.6 If m and n are positive integers such that $3 \leq m \leq L(n)+2$, then

$$
k\left(K_{n}^{m}\right) \leq n^{2}-n+1
$$

For small values of n, Park et al. [6] found the following competition numbers.
Theorem 1.7 If $m \geq 2$, then $k\left(K_{2}^{m}\right)=2$ and if $m \geq 3$, then $k\left(K_{3}^{m}\right)=4$.
While we do not do so in this paper, it would be interesting to study the competition number of $K_{n_{1}, n_{2}, n_{3}, n_{4}}$ since very little is currently known. Furthermore, there remains much to be known on computing the competition number $k\left(K_{n}^{m}\right)$.

2 Edge clique covers of $K_{x, y, z}$

Let $U=\left\{u_{1}, \ldots, u_{x}\right\}, V=\left\{v_{1}, \ldots, v_{y}\right\}$, and $W=\left\{w_{1}, \ldots, w_{z}\right\}$ be the vertex partition sets of $K_{x, y, z}$ where $2 \leq x \leq y \leq z$. We use $\Delta(i, j, k)$ to denote the clique induced on the vertex set $\left\{u_{i}, v_{j}, w_{k}\right\}$ and we use $\Delta(j, k)$ to denote the clique induced on the vertex set $\left\{v_{j}, w_{k}\right\}$. Note that a clique of order 3 is the largest clique in $K_{x, y, z}$.

Competition numbers can be computed by first finding a minimal edge clique cover. Let $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ be a family of cliques in a graph G; i.e. the subgraph induced on $S_{i} \subseteq V(G)$ is complete for each $i \in[m]$. The family \mathcal{S} is called an edge clique cover of G provided $\{u, v\} \in E(G)$ if and only if $\{u, v\} \subseteq S_{i}$ for some $i \in[m]$. The edge clique cover number of G, denoted $\theta_{e}(G)$, is

$$
\theta_{e}(G)=\min \{|\mathcal{S}|: \mathcal{S} \text { is an edge clique cover of } G\} .
$$

Certainly, for any graph $G, k(G) \leq \theta_{e}(G)$. Indeed, if $\theta_{e}(G)=k$, then each vertex of a clique in G can be directed to a vertex of I_{k} in the digraph D.

We find a minimal edge clique cover of $K_{x, y, z}$ using r-semi latin squares. An r-semi latin square of order n is an $n \times n$ array such that each element (or symbol) from the set $S=\left\{s_{1}, s_{2}, \ldots, s_{n r}\right\}$ appears in each row and each column, and each cell contains r elements. If we label the rows and columns with sets $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ respectively, we may think of an r-semi latin square as a set of ordered triples $\left(r_{i}, c_{j}, s_{k}\right)$, where symbol s_{k} appears at the intersection of row r_{i} and column c_{j}. Where convenient, we use the notation $c_{j} \circ s_{k}$ to denote the row containing symbol s_{k} in column c_{j}.

Henceforth q and r are positive integers such that $z=q y+r$, where $0 \leq r<y$. Let L be a $(q+1)$-semi latin square of order y on the symbol set $S=\left\{s_{1}, \ldots, s_{(q+1) y}\right\}$. Furthermore, let $R^{\prime}=\left\{r_{1}^{\prime}, \ldots, r_{x}^{\prime}\right\} \subseteq R$ be a set of x rows and let $S^{\prime}=\left\{s_{1}^{\prime}, \ldots, s_{z}^{\prime}\right\} \subseteq S$ be a set of z symbols. We use

$$
L\left(R^{\prime}, C, S^{\prime}\right)=\left\{\left(r_{i}^{\prime}, c_{j}, s_{k}^{\prime}\right):\left(r_{i}^{\prime}, c_{j}, s_{k}^{\prime}\right) \in L, r_{i}^{\prime} \in R^{\prime}, s_{k}^{\prime} \in S^{\prime}\right\}
$$

to denote the $x \times y$ array on symbol set S^{\prime} induced by the intersection of rows R^{\prime} and columns C. Note that the family \mathcal{F}, defined below, is a subset of an edge clique cover of $K_{x, y, z}$. In fact, we will later show that \mathcal{F} is a minimal edge clique cover of $K_{x, y, z}$.

$$
\begin{align*}
& \mathcal{F}=\left\{\Delta(i, j, k):\left(r_{i}^{\prime}, c_{j}, s_{k}^{\prime}\right) \in L\left(R^{\prime}, C, S^{\prime}\right)\right\} \cup \\
& \left\{\Delta(j, k):\left(c_{j} \circ s_{k}, c_{j}, s_{k}\right) \in L\left(R \backslash R^{\prime}, C, S^{\prime}\right)\right\} \tag{1}
\end{align*}
$$

For an example of (1), consider $K_{2,4,6}$. Since $z=6$ and $y=4, q=1$. We use the following 2-semi latin square of order 4 as L and set $R^{\prime}=\left\{r_{1}, r_{4}\right\}$ and $S^{\prime}=\left\{s_{1}, \ldots, s_{6}\right\}$, where $r_{1}^{\prime}=r_{1}, r_{2}^{\prime}=r_{4}$ and $s_{i}^{\prime}=s_{i}=i$ for $1 \leq i \leq 6$.

1,2	4,5	3,7	6,8
5,6	7,8	1,2	3,4
7,8	2,3	4,6	1,5
3,4	1,6	5,8	2,7

Then the rectangular array $L\left(R^{\prime}, C, S^{\prime}\right)$ is

1,2	4,5	3	6
3,4	1,6	5	2

The clique $\Delta(1,1,2)$ is included in \mathcal{F} since $\left(r_{1}^{\prime}, c_{1}, s_{2}^{\prime}\right) \in L\left(R^{\prime}, C, S^{\prime}\right)$. The same can be said of $\Delta(2,1,3)$ since $\left(r_{2}^{\prime}, c_{1}, s_{3}^{\prime}\right) \in L\left(R^{\prime}, C, S^{\prime}\right)$. Also, since $\left(r_{2}, c_{1}, s_{5}^{\prime}\right) \in L\left(R \backslash R^{\prime}, C, S^{\prime}\right)$, $\Delta(1,5) \in \mathcal{F}$. The remaining members of \mathcal{F} are given in the following family;

$$
\begin{aligned}
\mathcal{F}=\{ & \Delta(1,1,1), \Delta(1,1,2), \Delta(1,2,4), \Delta(1,2,5), \Delta(1,3,3), \Delta(1,4,6), \\
& \Delta(2,1,3), \Delta(2,1,4), \Delta(2,2,1), \Delta(2,2,6), \Delta(2,3,5), \Delta(2,4,2), \\
& \Delta(1,5), \Delta(1,6), \Delta(3,1), \Delta(3,2), \Delta(4,3), \Delta(4,4), \Delta(2,2), \\
& \Delta(2,3), \Delta(3,4), \Delta(3,6), \Delta(4,1), \Delta(4,5)\}
\end{aligned}
$$

Lemma 2.1 The family \mathcal{F} is an edge clique cover of $K_{x, y, z}$. Moreover, \mathcal{F} is minimal and $\theta_{e}\left(K_{x, y, z}\right)=y z$.

Proof: First, we show that \mathcal{F} is an edge clique cover of $K_{x, y, z}$. Let $R^{\prime}=\left\{r_{1}^{\prime}, \ldots, r_{x}^{\prime}\right\} \subseteq R$ be a set of x rows and let $S^{\prime}=\left\{s_{1}^{\prime}, \ldots, s_{z}^{\prime}\right\}$ be a set of z symbols in a $(q+1)$-semi latin square L of order y. Consider the edge $e=\left\{u_{i}, v_{j}\right\}$ in $K_{x, y, z}, i \in[x]$ and $j \in[y]$. Let $S_{i, j}$ denote the set of $q+1$ symbols at the intersection of r_{i}^{\prime} and c_{j}. If $S_{i, j} \cap S^{\prime}=\emptyset$, then $q+1 \leq q-r$, a contradiction as $r \geq 0$. Therefore there is an integer k such that $\left(r_{i}^{\prime}, c_{j}, s_{k}^{\prime}\right) \in L\left(R^{\prime}, C, S^{\prime}\right)$. Thus the clique $\Delta(i, j, k) \in \mathcal{F}$ covers the edge e.

Now set $e=\left\{u_{i}, w_{j}\right\}, i \in[x]$ and $j \in[z]$. Since each symbol of S^{\prime} appears in each row of $L\left(R^{\prime}, C, S^{\prime}\right)$, there is an integer k such that $\left(r_{i}^{\prime}, c_{k}, s_{j}^{\prime}\right) \in L\left(R^{\prime}, C, S^{\prime}\right)$. Hence $\Delta(i, k, j) \in \mathcal{F}$ covers e. Finally, set $e=\left\{v_{i}, w_{j}\right\}, i \in[y]$ and $j \in[z]$. There is an integer $k \in[y]$ so that $r_{k}=c_{i} \circ s_{j}^{\prime}$. If $r_{k} \in R^{\prime}$, then certainly e is covered by a clique of order three in \mathcal{F}. Otherwise $r_{k} \in R \backslash R^{\prime}$ and $\Delta(i, j)$ covers e.

We finish the proof by showing that $y z$ is a lower and upper bound for $\theta_{e}\left(K_{x, y, z}\right)$. Note that there are $y z$ edges of the form $\{v, w\}$ where $v \in V$ and $w \in W$. Furthermore, there is no clique in $K_{x, y, z}$ that contains two edges of the form $\{v, w\}$. It follows that at least $y z$ cliques are needed to cover the edges that contain end vertices in partitions V and W. Hence $\theta_{e}\left(K_{x, y, z}\right) \geq y z$. To show that $y z$ is an upper bound for $\theta_{e}\left(K_{x, y, z}\right)$, we need only to provide an edge clique cover of $K_{x, y, z}$ whose cardinality is $y z$. From above, \mathcal{F} is an edge clique cover of $K_{x, y, z}$. Since L contains precisely $y^{2}(q+1)$ triples and since symbols from $S \backslash S^{\prime}$ appear precisely y times in L, \mathcal{F} is made of

$$
y^{2}(q+1)-y(y(q+1)-z)=y z
$$

triples. Hence $\theta_{e}\left(K_{x, y, z}\right) \leq y z$. Moreover, this shows that \mathcal{F} is a minimal edge clique cover of $K_{x, y, z}$.

To end this section we comment on a general minimal edge clique cover of $K_{x, y, z}$ when $x=y$.

Lemma 2.2 Let \mathcal{S} be a minimal edge clique cover of $K_{y, y, z}$ and let $S, S^{\prime} \in \mathcal{S}$. If $\left|S \cap S^{\prime}\right|=2$, then $S=\{u, v, w\}$ and $S^{\prime}=\left\{u, v, w^{\prime}\right\}$ where $u \in U, v \in V$ and $w, w^{\prime} \in W$.

Proof: We may assume that $|S|=3$ for each $S \in \mathcal{S}$. Let $S, S^{\prime} \in \mathcal{S}$ such that $\left|S \cap S^{\prime}\right|=2$. Since $|\mathcal{S}|=y z$ (by Lemma 2.1) and since no clique contains two edges of the form $\{v, w\}$, no two cliques of \mathcal{S} share an edge of the form $\{v, w\}$ where $v \in V$ and $w \in W$. Similarly, no two cliques share an edge of the form $\{u, w\}$ where $u \in U$ and $w \in W$. Hence $\left(S \cup S^{\prime}\right) \backslash\left(S \cap S^{\prime}\right) \subseteq$ W.

3 Proof of main result

The following characterization of competition graphs [2] is used to show a lower bound for $k\left(K_{x, y, z}\right)$.

Theorem 3.1 A graph G is the competition graph of an acyclic digraph if and only if there exists an ordering a_{1}, \ldots, a_{n} of the vertices of G and an edge clique cover $\left\{S_{1}, \ldots, S_{n}\right\}$ of G such that if $a_{i} \in S_{j}$, then $i<j$.

An equivalent way of stating Theorem 3.1 is to say that there exists an ordering a_{1}, \ldots, a_{n} of the vertices of G and an edge clique cover $\left\{S_{1}, \ldots, S_{n}\right\}$ of G such that $S_{i} \subseteq\left\{a_{1}, \ldots, a_{i-1}\right\}$ for each i.

Theorem 3.2 For integers x, y and z where $2 \leq x \leq y \leq z$,

$$
k\left(K_{x, y, z}\right) \geq y z-z-y-x+3 .
$$

Moreover, if $x=y$, then

$$
k\left(K_{y, y, z}\right) \geq y z-2 y-z+4 .
$$

Proof: Let $k=k\left(K_{x, y, z}\right)$ and let D denote an acyclic digraph such that $C(D)=$ $K_{x, y, z} \cup I_{k}$. Note that \mathcal{S} is an edge clique cover of $K_{x, y, z}$ if and only if \mathcal{S} is an edge clique cover of $K_{x, y, z} \cup I_{k}$. Then, from Theorem 3.1, there is an ordering $a_{1}, \ldots, a_{x+y+z+k}$ of the vertices of $K_{x, y, z} \cup I_{k}$ and an edge clique cover $\mathcal{S}=\left\{S_{1}, \ldots, S_{x+y+z+k}\right\}$ of $K_{x, y, z}$ such that $S_{i} \subseteq\left\{a_{1}, \ldots, a_{i-1}\right\}$ for each i. We may assume that the order of each non empty clique in \mathcal{S} is three. Then $S_{1}=S_{2}=S_{3}=\emptyset$ and so, by Lemma 2.1, $\left|S \backslash\left\{S_{1}, S_{2}, S_{3}\right\}\right| \geq y z$. Hence $x+y+z+k-3 \geq y z$ and so $k \geq y z-x-y-z+3$.

Suppose now that $x=y$ and that, for the sake of contradiction, $k=y z-2 y-z+3$. Then S_{i} is non empty for each $i \geq 4, S_{4}=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $S_{5} \subset\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. So it must be that $\left|S_{4} \cap S_{5}\right|=2$. Without loss of generality, assume that $S_{5}=\left\{a_{2}, a_{3}, a_{4}\right\}$. By Lemma 2.2, $a_{1}, a_{4} \in W$. Let $l \geq 4$ be the largest integer such that $S_{l+1}=\left\{a_{2}, a_{3}, a_{l}\right\}$ and $a_{l} \in W$. Then $S_{l+2}=\left\{a_{2}, a_{j}, a_{l+1}\right\}$ or $S_{l+2}=\left\{a_{3}, a_{j}, a_{l+1}\right\}, j \in[l] \backslash\{2,3\}$. In either case $\left|S_{l+2} \cap S_{1}\right|=2$ or $\left|S_{l+2} \cap S_{j+1}\right|=2$. But $a_{l+1} \in U \cup V$, contradicting Lemma 2.2. Hence $k \geq y z-2 y-z+4$.

We now proceed to the main result. Henceforth L is a $(q+1)$-semi latin square of order y such that $\left(r_{i}, c_{j}, s_{k}\right) \in L$ if and only if $i+j-1 \equiv k \bmod y$. Furthermore, we set $R^{\prime}=\left\{r_{1}, \ldots, r_{x-1}, r_{y}\right\}$ and $S^{\prime}=\left\{s_{1}, \ldots, s_{z}\right\}$ where $r_{i}^{\prime}=r_{i}$ for $i \in[x-1], r_{x}^{\prime}=r_{y}$ and $s_{i}^{\prime}=s_{i}$ for $i \in[z]$. For $y=5$ and $z=13$, the arrays below are L and $L\left(R^{\prime}, C, S^{\prime}\right)$ respectively.

$1,6,11$	$2,7,12$	$3,8,13$	$4,9,14$	$5,10,15$
$2,7,12$	$3,8,13$	$4,9,14$	$5,10,15$	$1,6,11$
$3,8,13$	$4,9,14$	$5,10,15$	$1,6,11$	$2,7,12$
$4,9,14$	$5,10,15$	$1,6,11$	$2,7,12$	$3,8,13$
$5,10,15$	$1,6,11$	$2,7,12$	$3,8,13$	$4,9,14$

$1,6,11$	$2,7,12$	$3,8,13$	4,9	5,10
$2,7,12$	$3,8,13$	4,9	5,10	$1,6,11$
5,10	$1,6,11$	$2,7,12$	$3,8,13$	4,9

Proof of Theorem 1.3. Case 1: $x=y$.
In this case $r_{i}^{\prime}=r_{i}$ for each i. We first order the vertices $a_{1}, \ldots, a_{2 y+z}$ of $K_{y, y, z}$ as

$$
u_{1}, v_{1}, w_{1}, u_{2}, v_{y}, w_{y}, u_{y}, v_{2}, w_{2}, u_{y-1}, v_{y-1}, w_{y-1}, \ldots, u_{3}, v_{3}, w_{3}, w_{y+1}, \ldots, w_{z}
$$

Note that all vertices of $K_{y, y, z}$ appear in the vertex ordering. Next, we order $2 y+z-3$ cliques of \mathcal{F} in the following way. The first 6 cliques are ordered as

$$
\begin{aligned}
\Delta_{1} & =\left\{u_{1}, v_{1}, w_{1}\right\}, \Delta_{2}=\left\{u_{2}, v_{y}, w_{1}\right\}, \Delta_{3}=\left\{u_{1}, v_{y}, w_{y}\right\}, \\
\Delta_{4} & =\left\{u_{y}, v_{1}, w_{y}\right\}, \Delta_{5}=\left\{u_{y}, v_{2}, w_{1}\right\}, \Delta_{6}=\left\{u_{1}, v_{2}, w_{2}\right\}
\end{aligned}
$$

For $0 \leq s \leq y-4$, the next $3 y-9$ cliques are given as

$$
\begin{aligned}
\Delta_{3 s+7} & =\left\{u_{y-s-1}, v_{2}, w_{y-s}\right\}, \\
\Delta_{3 s+8} & =\left\{u_{2}, v_{y-s-1}, w_{y-s}\right\}, \text { and } \\
\Delta_{3 s+9} & =\left\{u_{1}, v_{y-s-1}, w_{y-s-1}\right\} .
\end{aligned}
$$

Finally, for $0 \leq s \leq z-y-1$, the remaining $z-y$ cliques are

$$
\Delta_{3 y-2+s}=\left\{u, v, w_{y+s+1}\right\}
$$

where $u \in U$ and $v \in V$ are any vertices such that $\left\{u, v, w_{y+s+1}\right\} \in \mathcal{F}$.
Given the vertex and clique orderings above, we construct a digraph that shows that $y z-2 y-z+4$ is an upper bound for $k\left(K_{y, y, z}\right)$. We must first note that

$$
\begin{equation*}
\Delta_{1} \cup \Delta_{2} \cup \ldots \cup \Delta_{i} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{i+3}\right\} \tag{2}
\end{equation*}
$$

for $i \in[2 y+z-3]$. This follows from the fact that $\Delta_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}, \Delta_{2} \backslash \Delta_{1}=\left\{a_{4}, a_{5}\right\}$ and $\Delta_{i} \backslash\left(\Delta_{1} \cup \ldots \cup \Delta_{i-1}\right)=\left\{a_{i+3}\right\}$, where $3 \leq i \leq 2 y+z-3$.

Since \mathcal{F} is a minimal edge clique cover, there are $y z-2 y-z+3$ cliques in $\mathcal{F} \backslash$ $\left\{\Delta_{1}, \ldots, \Delta_{2 y+z-3}\right\}$. Set $\mathcal{F} \backslash\left\{\Delta_{1}, \ldots, \Delta_{2 y+z-3}\right\}=\left\{T_{1}, \ldots, T_{y z-2 y-z+3}\right\}$. Let D be the digraph with the following vertex set V and arc set A;

$$
\begin{aligned}
V(D)= & \left\{a_{1}, \ldots, a_{z+2 y-3}\right\} \cup\left\{\alpha_{0}, \ldots, \alpha_{y z-2 y-z+3}\right\} \\
A(D)= & \bigcup_{\substack{i=1 \\
y z-2 y-z+3}}^{2 y+z-4}\left\{\left(\delta, a_{i+4}\right): \delta \in \Delta_{i}\right\} \cup\left\{\left(\delta, \alpha_{0}\right): \delta \in \Delta_{2 y+z-3}\right\} \cup \\
& \bigcup_{i=1}\left\{\left(\delta, \alpha_{i}\right): \delta \in T_{i}\right\} .
\end{aligned}
$$

From statement (2), the digraph D is acyclic. Because every clique in \mathcal{F} has a common out-neighbor in $D, E(C(D)) \subseteq E\left(K_{y, y, z}\right)$. Moreover, the in-nighborhood of a vertex of D is a clique in \mathcal{F}. Therefore $E\left(K_{y, y, z}\right) \subseteq E\left(K_{y, y, z}\right)$. It follows that $C(D)=K_{y, y, z} \cup I_{y z-2 y-z+4}$. Hence, by Theorem 3.2,

$$
k\left(K_{y, y, z}\right)=y z-2 y-z+4 .
$$

Case 2: $x<y$.
In this case $r_{i}^{\prime}=r_{i}$ for each $i \in[x-1]$ and $r_{x}^{\prime}=r_{y}$. As in the previous case, we begin by ordering vertices and cliques in $K_{x, y, z}$. The vertex ordering a_{1}, \ldots, a_{x+y+z} of $K_{x, y, z}$ is

$$
\begin{gathered}
u_{x}, v_{1}, w_{y}, v_{2}, w_{1}, u_{1}, w_{2}, u_{2}, v_{y}, w_{y-1}, v_{y-1}, \ldots, w_{x}, v_{x} \\
u_{x-1}, v_{x-1}, w_{x-1}, \ldots, u_{3}, v_{3}, w_{3}, w_{y+1}, \ldots, w_{z} .
\end{gathered}
$$

Next, we order $x+y+z-2$ cliques of \mathcal{F}. The first 7 cliques are ordered as

$$
\begin{gathered}
\Delta_{1}=\left\{u_{x}, v_{1}, w_{y}\right\}, \quad \Delta_{2}=\left\{v_{2}, w_{y}\right\}, \quad \Delta_{3}=\left\{u_{x}, v_{2}, w_{1}\right\} \\
\Delta_{4}=\left\{u_{1}, v_{1}, w_{1}\right\}, \quad \Delta_{5}=\left\{u_{1}, v_{2}, w_{2}\right\}, \quad \Delta_{6}=\left\{u_{2}, v_{1}, w_{2}\right\}, \quad \Delta_{7}=\left\{u_{2}, v_{y}, w_{1}\right\}
\end{gathered}
$$

For $0 \leq s \leq y-x-1$, the next $2(y-x)$ cliques in the ordering are given as

$$
\begin{aligned}
& \Delta_{2 s+8}=\left\{u_{x}, v_{y-s}, w_{y-s-1}\right\}, \text { and } \\
& \Delta_{2 s+9}=\left\{u_{1}, v_{y-s-1}, w_{y-s-1}\right\} .
\end{aligned}
$$

For $0 \leq s \leq x-4$, the next $3 x-9$ cliques are given as

$$
\begin{aligned}
\Delta_{3 s+2(y-x)+8} & =\left\{u_{x-s-1}, v_{2}, w_{x-s}\right\}, \\
\Delta_{3 s+2(y-x)+9} & =\left\{u_{2}, v_{x-s-1}, w_{x-s}\right\}, \text { and } \\
\Delta_{3 s+2(y-x)+10} & =\left\{u_{1}, v_{x-s-1}, w_{x-s-1}\right\} .
\end{aligned}
$$

Finally, for $0 \leq s \leq z-y-1$, the remaining $z-y$ cliques in the ordering are

$$
\Delta_{2 y+x-1+s}=\left\{u, v, w_{y+s+1}\right\}
$$

where $u \in U$ and $v \in V$ are any vertices such that $\left\{u, v, w_{y+s+1}\right\} \in \mathcal{F}$.
In this case note that

$$
\begin{equation*}
\Delta_{1} \cup \Delta_{2} \cup \ldots \cup \Delta_{i} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{i+2}\right\} \tag{3}
\end{equation*}
$$

for $i \in[z+y+x-4]$. Set $\mathcal{F}^{\prime} \backslash\left\{\Delta_{1}, \ldots, \Delta_{z+y+x-4}\right\}=\left\{T_{1}, \ldots, T_{y z-z-y-x+4}\right\}$. Let D be the digraph with the following vertex set V and arc set A;

$$
\begin{aligned}
V(D) & =\left\{a_{1}, \ldots, a_{z+y+x-4}\right\} \cup\left\{\alpha_{0}, \ldots, \alpha_{y z-z-y-x+2}\right\} \\
A(D) & =\bigcup_{i=1}^{z+y+x-3}\left\{\left(\delta, a_{i+3}\right): \delta \in \Delta_{i}\right\} \cup\left\{\left(\delta, \alpha_{0}\right): \delta \in \Delta_{z+y+x-4}\right\} \cup \\
& =\bigcup_{i=1}^{y z-z-y-x+2}\left\{\left(\delta, \alpha_{i}\right): \delta \in T_{i}\right\} .
\end{aligned}
$$

It follows from statement (3) that D is acyclic. Furthermore $C(D)=K_{x, y, z} \cup I_{y z-z-y-x+3}$. Hence, by Theorem 3.2,

$$
k\left(K_{x, y, z}\right)=y z-z-y-x+3 .
$$

References

[1] J.E. Cohen, Interval graphs and food webs: A finding and a problem, in: Document 17696-PR, RAND Corporation, Santa Monica, CA, 1968.
[2] R.D. Dutton, R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317.
[3] S.-R. Kim, Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math. 156 (2008) 3522-3524
[4] J. Kuhl, Latin transversals and competition numbers for complete multipartite graphs. Submitted to Discrete Appl. Math.
[5] R.J. Osput, On the computation of the competition number of a graph, SIAM J. Algebra. Discrete Methods 3 (1981) 420-428.
[6] B. Park, S.-R Kim, Y. Sano, On competition numbers of complete multipartite graphs with partite sets of equal size, prepreint. RIMS-1644 October 2008. http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1644.pdf
[7] B. Park, S.-R Kim, Y. Sano, The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares, Discrete Math. 309 (2009) 6464-6469.
[8] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976)

[^0]: *University of West Florida, Department of Mathematics and Statistics, Pensacola, Fl 32514; jkuhl@uwf.edu

