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Abstract

We present a piecewise formula for the competition numbers of the complete tri-
partite graphs. For positive integers x, y and z where 2 < z < y < z, the competition
number of the complete tripartite graph K, , . is yz2 — 2 —y — x + 3 whenever z # y
and yz — 2y — z + 4 otherwise.

1 Introduction

In this note we consider competition graphs as introduced by Cohen in [1] and we consider
a problem left open by Kim and Sano in [3]. Let D be a digraph with vertex set V' and
arc set A. If u,v € V have a common out-neighbor in D, then u and v are said to be in
competition. The simple graph (V, E') in which edge set E is defined as

E = {{u,v} : uwand v are in competition in D}

is called the competition graph of D and is denoted C'(D). Given the applicative nature
of competition graphs (one example is that V' represents a set of organisms in a food-web
and competition is defined by organisms competing for food), it is important to ask which
graphs are competition graphs of acyclic digraphs. In [8], Roberts observed that for any
graph GG and for a sufficiently large integer k, G U I} is the competition graph of an acyclic
digraph, where [, denotes the graph on £ isolated vertices. The minimum such k is called
the competition number of GG. Formally, the competition number of G is

k(G) = min{k : GU I, = C(D) in which D is an acyclic digraph}.

In general, the problem of computing k(G) is NP-hard [5]. So to reduce generality, G
will belong to the class of complete multipartite graphs. The following theorems are what is
currently known concerning the competition numbers of compete multipartite graphs.
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Theorem 1.1 The competition number of the complete bipartite graph K, ,, s ning —mn; —
Mo + 2.

Theorem 1.1 is a corollary of the statement that if G is a triangle-free connected graph,
then k(G) = |E(G)|—|V(G)|+2. Recently, Kim and Sano [3] found the competition number
of the complete tripartite graph K, .

Theorem 1.2 The competition number k(K32) is n* — 3n + 4.

We extend Kim and Sano’s result to complete tripartite graphs in which the partite sets
may not have equal size. We prove the following formula:

Theorem 1.3 For positive integers x, y and z where 2 < x <y < z,

yz — 2y — z + 4, ifr=y
yz—z—y—x+3, ifr#y

k(Kx,y,Z) = {

Some progress has been made on competition numbers of the complete tetrapartite graph
K? [4] and, more generally, the complete multipartite graph K™ [4].

Theorem 1.4 Ifn > 5 is odd, then
n? —4n +7 < k(K}) <n®—4n +8.
Theorem 1.5 If n is prime and m < n, then
k(K™ <n*—2n+3.

Park et al. [7] give bounds for the general case with respect to L(n), the largest size of
a family of mutually orthogonal latin squares of order n.

Theorem 1.6 If m and n are positive integers such that 3 < m < L(n) + 2, then
E(K™ <n?—n+1.
For small values of n, Park et al. [6] found the following competition numbers.
Theorem 1.7 If m > 2, then k(KY') =2 and if m > 3, then k(K1) = 4.

While we do not do so in this paper, it would be interesting to study the competition
number of K, , nsn, since very little is currently known. Furthermore, there remains much
to be known on computing the competition number k(K").



2 Edge clique covers of K, , .

Let U = {uy,...,u.}, V=A{v1,...,v,}, and W = {wy,...,w,} be the vertex partition sets
of K,, . where 2 <z <y < z. We use A(i, j,k) to denote the clique induced on the vertex
set {u;,vj, w,} and we use A(j, k) to denote the clique induced on the vertex set {v;, wy}.
Note that a clique of order 3 is the largest clique in K, ..

Competition numbers can be computed by first finding a minimal edge clique cover.
Let & = {S1,...,5n} be a family of cliques in a graph G; i.e. the subgraph induced on
S; € V(GQ) is complete for each i € [m]. The family S is called an edge clique cover of G
provided {u,v} € E(G) if and only if {u,v} C S; for some i € [m]. The edge clique cover
number of G, denoted 0.(G), is

0.(G) = min{|S| : S is an edge clique cover of G}.

Certainly, for any graph G, k(G) < 0.(G). Indeed, if 0.(G) = k, then each vertex of a clique
in GG can be directed to a vertex of I in the digraph D.

We find a minimal edge clique cover of K,, . using r-semi latin squares. An r-semi
latin square of order n is an n x n array such that each element (or symbol) from the set
S = {s1,S2,..., 8} appears in each row and each column, and each cell contains r elements.
If we label the rows and columns with sets R = {r,7q,...,r,} and C' = {c1,¢0,...,¢n}
respectively, we may think of an r-semi latin square as a set of ordered triples (7, ¢;, si),
where symbol s;, appears at the intersection of row r; and column ¢;. Where convenient, we
use the notation c; o s;, to denote the row containing symbol s in column c;.

Henceforth ¢ and r are positive integers such that z = qy +r, where 0 < r < y. Let L be
a (¢ + 1)-semi latin square of order y on the symbol set S = {s1,...,S(g41)y}. Furthermore,
let R ={rl,...,7.} € R be a set of z rows and let S" = {s],...,5.} C S be a set of z
symbols. We use

L(R,C,S") = {(r},cj,s) : (ri,cj8,) €L, i€ R, s, €85}

to denote the z x y array on symbol set S’ induced by the intersection of rows R’ and columns
C. Note that the family F, defined below, is a subset of an edge clique cover of K, , .. In
fact, we will later show that F is a minimal edge clique cover of K, ,, ..

F={A®i,5,k): (r},c;,s)) € L(R,C,5")}U

{A(j,k): (¢josk,cjs6) € L(R\R,C,S)} (1)

For an example of (1), consider Ky,46. Since z = 6 and y = 4, ¢ = 1. We use the
following 2-semi latin square of order 4 as L and set R’ = {ry,ry} and S’ = {s1,...,56},
where ] =ry, rh=ryand s, =s; =i for 1 <i <6.



12145371638
56 781,234
781234615
3411,6]58]27

Then the rectangular array L(R’,C,S") is

12145376
3411652

The clique A(1,1,2) is included in F since (r],c1,s5) € L(R',C,S’). The same can be
said of A(2,1,3) since (15, ¢1,85) € L(R',C,S"). Also, since (r2,¢1,5) € L(R\ R',C,S"),
A(1,5) € F. The remaining members of F are given in the following family;

F={A(1,1,1),A(1,1,2),A(1,2,4), A(1,2,5), A(1,3,3), A1, 4, 6),
A(2,1,3),A(2,1,4), A(2,2,1), A(2,2,6), A(2,3,5), A(2,4,2),
A(1,5),A(1,6), A(3,1), A(3,2), A(4,3), A(4,4), A(2,2),
A(2.3), A(3,4), A(3,6), A4, 1), A(4,5)}

Lemma 2.1 The family F is an edge clique cover of K, .. Moreover, F is minimal and
0 (Kyy ) = yz.

PROOF: First, we show that F is an edge clique cover of K, , .. Let R = {r{,...,7.} CR
be a set of x rows and let S" = {s],...,s.} be a set of z symbols in a (¢+ 1)-semi latin square
L of order y. Consider the edge e = {u;,v;} in K;,., i € [z] and j € [y]. Let S;; denote
the set of ¢ + 1 symbols at the intersection of 7} and ¢;. If S;; NS" =0, then ¢+ 1 < g —r,
a contradiction as r > 0. Therefore there is an integer k& such that (r},c;,s;) € L(R',C,S").
Thus the clique A(i, j, k) € F covers the edge e.

Now set e = {u;,w;}, i € [x] and j € [2]. Since each symbol of S” appears in each row of
L(R',C,S"), there is an integer k such that (1}, ¢y, sj) € L(R',C,S"). Hence A(i, k,j) € F
covers e. Finally, set e = {v;,w;}, i € [y] and j € [z]. There is an integer k € [y] so that
Ty = ¢;0 8. If v, € R/, then certainly e is covered by a clique of order three in F. Otherwise
r, € R\ R and A(i, j) covers e.

We finish the proof by showing that yz is a lower and upper bound for 6.(K,, .). Note
that there are yz edges of the form {v,w} where v € V and w € W. Furthermore, there
is no clique in K, , , that contains two edges of the form {v,w}. It follows that at least yz
cliques are needed to cover the edges that contain end vertices in partitions V' and W. Hence
0.(K;,..) > yz. To show that yz is an upper bound for 6.(K,, .), we need only to provide
an edge clique cover of K, , . whose cardinality is yz. From above, F is an edge clique cover
of K;,... Since L contains precisely y*(¢ + 1) triples and since symbols from S\ S" appear
precisely y times in L, F is made of

g+ —ylylg+1) —2) =yz
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triples. Hence 6.(K,,.) < yz. Moreover, this shows that F is a minimal edge clique cover
of Ky y 2 O

To end this section we comment on a general minimal edge clique cover of K, , . when
xr=y.

Lemma 2.2 Let S be a minimal edge clique cover of K,,,, ., and let S, 5" € S. If |SNS'| =2,
then S = {u,v,w} and S" = {u,v,w'} where u e U, v € V and w,w’ € W.

PROOF: We may assume that |S| = 3 foreach S € S. Let S, 8" € S such that |[SNS'| = 2.
Since |S| = yz (by Lemma 2.1) and since no clique contains two edges of the form {v, w}, no
two cliques of S share an edge of the form {v, w} where v € V and w € W. Similarly, no two
cliques share an edge of the form {u,w} where u € U and w € W. Hence (SUS")\ (SNS’) C
w. O

3 Proof of main result

The following characterization of competition graphs [2] is used to show a lower bound for
k(Kyy.z)

Theorem 3.1 A graph G is the competition graph of an acyclic digraph if and only if there
exists an ordering ay, . .., a, of the vertices of G and an edge clique cover {Sy,...,S,} of G
such that if a; € S;, then i < j.

An equivalent way of stating Theorem 3.1 is to say that there exists an ordering aq, . .., a,
of the vertices of G and an edge clique cover {51, ..., S,} of G such that S; C {ay,...,a;_1}
for each 1.

Theorem 3.2 For integers x, y and z where 2 < x <y < z,
k(Kpy.)>yz—2z—y—x+3.

Moreover, if x =y, then
k(Ky,.) >yz—2y—z+4.

PrROOF: Let k = k(K,,.) and let D denote an acyclic digraph such that C(D) =
K, ..U, Note that S is an edge clique cover of K, . if and only if S is an edge clique
cover of K, .U I;. Then, from Theorem 3.1, there is an ordering a1, ..., ayqy4.4r of the
vertices of K, , .U I; and an edge clique cover S = {51, ..., Sytytz4k} of Kyy . such that
S; C{ay,...,a;_1} for each i. We may assume that the order of each non empty clique in
S is three. Then S; = Sy = S3 = () and so, by Lemma 2.1, |S \ {S1, S2, S3}| > yz. Hence
r+y+z+k—3>yzandsok>yz—z—y— 2+ 3.



Suppose now that x = y and that, for the sake of contradiction, k = yz—2y—z+3. Then

S; is non empty for each i > 4, Sy = {a1,a2,a3} and S5 C {a,as,as,as}. So it must be
that [S, N .S5| = 2. Without loss of generality, assume that S5 = {as, as,as}. By Lemma 2.2,
aj,ay € W. Let I > 4 be the largest integer such that S;;1 = {ag,as3,q;} and a; € W. Then
Sl+2 = {CLQ, Qaj, al+1} or Sl+2 = {ag, a, al+1}, j c [l] \ {2, 3} In either case |Sl+2 N Sl| =2or
|Si42 N Sj41| = 2. But @41 € U UV, contradicting Lemma 2.2. Hence k > yz — 2y — z + 4.
O

We now proceed to the main result. Henceforth L is a (¢ + 1)-semi latin square of
order y such that (r;,¢;j,s;) € L if and only if i + j — 1 = k£ mod y. Furthermore, we set
R ={ry,...,rp_1,ry} and 8" = {s1,...,s,} wherer, =r; fori € [x—1], 7, =r, and s, = s;
for i € [z]. For y =5 and z = 13, the arrays below are L and L(R',C,S’) respectively.

16,11 | 2,7,12 | 38,13 | 49,14 | 5,10,15
2,712 | 38,13 | 49,14 | 5,10,15 | 1,6,11
38,13 | 49,14 | 510,15 | 1,6,11 | 2,7,12
49,14 | 5,10,15 | 16,11 | 2,7,12 | 38,13
510,15 | 1,6,11 | 2,7,12 | 38,13 | 49,14

161127123813 49 | 510
2,712 (3813 49 | 5,10 | 16,11
510 | 1,6,11 | 2,7,12 [ 38,13 | 49

Proof of Theorem 1.3. Case 1: z = y.
In this case r; = r; for each i. We first order the vertices ay, ..., as, of K, . as
Uz, V1, W1, U2, Uy, Wy, Uy, V2, W2, Uy—1, Uy—1, Wy—1, ..., U3, V3, W3, Wy41, ..., W,.

Note that all vertices of K, . appear in the vertex ordering. Next, we order 2y + z — 3
cliques of F in the following way. The first 6 cliques are ordered as

A1 = {ulavbwl}; AQ - {u2avy7w1}> AB = {ulavvay}a

Ay = {uy,vi,wy}, As = {uy,va, w1}, Ag = {ur, vz, wa}
For 0 < s <y —4, the next 3y — 9 cliques are given as
A33+7 = {uyfsfla V2, wyfs}y
A35—‘,—8 - {u27 Vy—s5—1, wy—s}> and

A35—‘,—9 = {ul’ Vy—s—1, wy—s—l}‘



Finally, for 0 < s < z —y — 1, the remaining z — y cliques are

A3y—2—|—s - {U,7 v, wy+5+1}7

where u € U and v € V' are any vertices such that {u,v, w, 511} € F.
Given the vertex and clique orderings above, we construct a digraph that shows that
yz — 2y — z + 4 is an upper bound for k(K,, ). We must first note that

A1UA2U...UAZ-Q{al,ag,...,ai%} (2)

for i € [2y + z — 3]. This follows from the fact that Ay = {a1, as, a3}, Ao\ Ay = {ay, a5} and
A\ (AU UA ) ={airs}, where 3 <1 <2y+z—3.

Since F is a minimal edge clique cover, there are yz — 2y — z + 3 cliques in F \
{Al, ey A2y+z—3}- Set F \ {Al, . ,A2y+2_3} = {Tl, .. 7Tyz—2y—z+3}‘ Let D be the di-
graph with the following vertex set V' and arc set A;

V(D) :{al, e ,az+2y_3} U {(1/0, ce ,(l/yz_gy_2+3}
2y+2—4

AD) = |J {(6,ai4) - 6 € AFU{(6,00) 1 6 € Agypas}U

yz—2y—z+3

U {(6,00): 6 €T}

From statement (2), the digraph D is acyclic. Because every clique in F has a common
out-neighbor in D, E(C(D)) C E(K,,..). Moreover, the in-nighborhood of a vertex of D is
a clique in F. Therefore E(K,,.) C E(K,,.). It follows that C(D) = K, ;. U .oy s+4.
Hence, by Theorem 3.2,

k(Kyy.) =yz—2y—z+4.

Case 2: x < .

In this case r} = r; for each i € [z — 1] and r}, = r,. As in the previous case, we begin by

ordering vertices and cliques in K, , .. The vertex ordering ai, ..., apqyt. of Ky, is
Ug, V1, U)y, V9, W1, U1, Wa, U2, ’Uy, wy,l, nyl, ey Wyy Uy,
Ugp—1,Vgp—1,Wg—1,...,U3, V3, W3, U}erl, ey Wy

Next, we order = + y + z — 2 cliques of F. The first 7 cliques are ordered as

Ay = {uwavlawy}’ Ay = {U2uwy}7 AS = {u:mv%wl};
Ay = {Uhvlawl}a As = {Ul,U2,w2}7 Ag = {U27th2}, A7 = {U2,Uy7w1}
For 0 < s <y —x — 1, the next 2(y — z) cliques in the ordering are given as
A25—|—8 = {umavy—&wy—s—l}a and

A28+9 = {uh Vy—s5—1; wyfsfl}-



For 0 < s <z —4, the next 3z — 9 cliques are given as

A33+2(yf:v)+8 - {ux—s—ly V2, wz—s}a
A35—}—2(3}—@‘)-‘,—9 - {Ug, Vp—s—1, wx—s}y and

A3s—|—2(y—an)—‘,—10 = {ula Vg—s—1, wa:fsfl}-

Finally, for 0 < s < z — y — 1, the remaining z — y cliques in the ordering are

A2y+gc—1+s = {U; v, wy+s+1}7

where u € U and v € V' are any vertices such that {u,v, w, 511} € F.
In this case note that

A1UA2U...UAZ'g{al,&g,...,ai+2} (3)

forie[z+y+ax—4]. Set F\{A,.. .. Avipioa}={T1,...,Tys—sy_wta}. Let D be the
digraph with the following vertex set V' and arc set A;

V(D) = {al, ceey az+y+x_4} U {(1/0, e 7ayz—z—y—x+2}
z+y+x—3

AD) = |J {0 airs): 6 € AFU{(5,00): 0 € Auyyrna}U

yz—z—y—x+2

U {Ga): 6em}

=1

It follows from statement (3) that D is acyclic. Furthermore C(D) = K,y ULy, y—sts.
Hence, by Theorem 3.2,
k(Kpy.) =yz—z—y—x+3.
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