Complete tripartite graphs and their competition numbers

Jaromy Kuhl*

Abstract

We present a piecewise formula for the competition numbers of the complete tripartite graphs. For positive integers x, y and z where $2 \le x \le y \le z$, the competition number of the complete tripartite graph $K_{x,y,z}$ is yz - z - y - x + 3 whenever $x \ne y$ and yz - 2y - z + 4 otherwise.

1 Introduction

In this note we consider competition graphs as introduced by Cohen in [1] and we consider a problem left open by Kim and Sano in [3]. Let D be a digraph with vertex set V and arc set A. If $u, v \in V$ have a common out-neighbor in D, then u and v are said to be in competition. The simple graph (V, E) in which edge set E is defined as

 $E = \{\{u, v\} : u \text{ and } v \text{ are in competition in } D\}$

is called the competition graph of D and is denoted C(D). Given the applicative nature of competition graphs (one example is that V represents a set of organisms in a food-web and competition is defined by organisms competing for food), it is important to ask which graphs are competition graphs of acyclic digraphs. In [8], Roberts observed that for any graph G and for a sufficiently large integer $k, G \cup I_k$ is the competition graph of an acyclic digraph, where I_k denotes the graph on k isolated vertices. The minimum such k is called the competition number of G. Formally, the competition number of G is

 $k(G) = \min\{k : G \cup I_k = C(D) \text{ in which } D \text{ is an acyclic digraph}\}.$

In general, the problem of computing k(G) is NP-hard [5]. So to reduce generality, G will belong to the class of complete multipartite graphs. The following theorems are what is currently known concerning the competition numbers of complete multipartite graphs.

 $^{^{*}}$ University of West Florida, Department of Mathematics and Statistics, Pensacola, Fl32514;jkuhl@uwf.edu

Theorem 1.1 The competition number of the complete bipartite graph K_{n_1,n_2} is $n_1n_2 - n_1 - n_2 + 2$.

Theorem 1.1 is a corollary of the statement that if G is a triangle-free connected graph, then k(G) = |E(G)| - |V(G)| + 2. Recently, Kim and Sano [3] found the competition number of the complete tripartite graph $K_{n,n,n}$.

Theorem 1.2 The competition number $k(K_n^3)$ is $n^2 - 3n + 4$.

We extend Kim and Sano's result to complete tripartite graphs in which the partite sets may not have equal size. We prove the following formula:

Theorem 1.3 For positive integers x, y and z where $2 \le x \le y \le z$,

$$k(K_{x,y,z}) = \begin{cases} yz - 2y - z + 4, & \text{if } x = y \\ yz - z - y - x + 3, & \text{if } x \neq y \end{cases}$$

Some progress has been made on competition numbers of the complete tetrapartite graph K_n^4 [4] and, more generally, the complete multipartite graph K_n^m [4].

Theorem 1.4 If $n \ge 5$ is odd, then

$$n^{2} - 4n + 7 \le k(K_{n}^{4}) \le n^{2} - 4n + 8.$$

Theorem 1.5 If n is prime and $m \leq n$, then

$$k(K_n^m) \le n^2 - 2n + 3.$$

Park et al. [7] give bounds for the general case with respect to L(n), the largest size of a family of mutually orthogonal latin squares of order n.

Theorem 1.6 If m and n are positive integers such that $3 \le m \le L(n) + 2$, then

$$k(K_n^m) \le n^2 - n + 1.$$

For small values of n, Park et al. [6] found the following competition numbers.

Theorem 1.7 If $m \ge 2$, then $k(K_2^m) = 2$ and if $m \ge 3$, then $k(K_3^m) = 4$.

While we do not do so in this paper, it would be interesting to study the competition number of K_{n_1,n_2,n_3,n_4} since very little is currently known. Furthermore, there remains much to be known on computing the competition number $k(K_n^m)$.

2 Edge clique covers of $K_{x,y,z}$

Let $U = \{u_1, \ldots, u_x\}$, $V = \{v_1, \ldots, v_y\}$, and $W = \{w_1, \ldots, w_z\}$ be the vertex partition sets of $K_{x,y,z}$ where $2 \le x \le y \le z$. We use $\Delta(i, j, k)$ to denote the clique induced on the vertex set $\{u_i, v_j, w_k\}$ and we use $\Delta(j, k)$ to denote the clique induced on the vertex set $\{v_j, w_k\}$. Note that a clique of order 3 is the largest clique in $K_{x,y,z}$.

Competition numbers can be computed by first finding a minimal edge clique cover. Let $S = \{S_1, \ldots, S_m\}$ be a family of cliques in a graph G; i.e. the subgraph induced on $S_i \subseteq V(G)$ is complete for each $i \in [m]$. The family S is called an edge clique cover of G provided $\{u, v\} \in E(G)$ if and only if $\{u, v\} \subseteq S_i$ for some $i \in [m]$. The edge clique cover number of G, denoted $\theta_e(G)$, is

 $\theta_e(G) = \min\{|\mathcal{S}| : \mathcal{S} \text{ is an edge clique cover of } G\}.$

Certainly, for any graph G, $k(G) \leq \theta_e(G)$. Indeed, if $\theta_e(G) = k$, then each vertex of a clique in G can be directed to a vertex of I_k in the digraph D.

We find a minimal edge clique cover of $K_{x,y,z}$ using r-semi latin squares. An r-semi latin square of order n is an $n \times n$ array such that each element (or symbol) from the set $S = \{s_1, s_2, \ldots, s_{nr}\}$ appears in each row and each column, and each cell contains r elements. If we label the rows and columns with sets $R = \{r_1, r_2, \ldots, r_n\}$ and $C = \{c_1, c_2, \ldots, c_n\}$ respectively, we may think of an r-semi latin square as a set of ordered triples (r_i, c_j, s_k) , where symbol s_k appears at the intersection of row r_i and column c_j . Where convenient, we use the notation $c_j \circ s_k$ to denote the row containing symbol s_k in column c_j .

Henceforth q and r are positive integers such that z = qy + r, where $0 \le r < y$. Let L be a (q+1)-semi latin square of order y on the symbol set $S = \{s_1, \ldots, s_{(q+1)y}\}$. Furthermore, let $R' = \{r'_1, \ldots, r'_x\} \subseteq R$ be a set of x rows and let $S' = \{s'_1, \ldots, s'_z\} \subseteq S$ be a set of z symbols. We use

$$L(R',C,S') = \{(r'_i,c_j,s'_k): \ (r'_i,c_j,s'_k) \in L, \ r'_i \in R', \ s'_k \in S'\}$$

to denote the $x \times y$ array on symbol set S' induced by the intersection of rows R' and columns C. Note that the family \mathcal{F} , defined below, is a subset of an edge clique cover of $K_{x,y,z}$. In fact, we will later show that \mathcal{F} is a minimal edge clique cover of $K_{x,y,z}$.

$$\mathcal{F} = \{ \Delta(i, j, k) : (r'_i, c_j, s'_k) \in L(R', C, S') \} \cup$$
$$\{ \Delta(j, k) : (c_j \circ s_k, c_j, s_k) \in L(R \setminus R', C, S') \}$$
(1)

For an example of (1), consider $K_{2,4,6}$. Since z = 6 and y = 4, q = 1. We use the following 2-semi latin square of order 4 as L and set $R' = \{r_1, r_4\}$ and $S' = \{s_1, \ldots, s_6\}$, where $r'_1 = r_1$, $r'_2 = r_4$ and $s'_i = s_i = i$ for $1 \le i \le 6$.

1,2	4,5	3,7	6,8
$5,\!6$	7,8	1,2	3,4
7,8	2,3	4,6	1,5
3,4	1,6	5,8	2,7

Then the rectangular array L(R', C, S') is

1,2	4,5	3	6
3,4	1,6	5	2

The clique $\Delta(1, 1, 2)$ is included in \mathcal{F} since $(r'_1, c_1, s'_2) \in L(R', C, S')$. The same can be said of $\Delta(2, 1, 3)$ since $(r'_2, c_1, s'_3) \in L(R', C, S')$. Also, since $(r_2, c_1, s'_5) \in L(R \setminus R', C, S')$, $\Delta(1, 5) \in \mathcal{F}$. The remaining members of \mathcal{F} are given in the following family;

$$\begin{aligned} \mathcal{F} &= \{ \Delta(1,1,1), \Delta(1,1,2), \Delta(1,2,4), \Delta(1,2,5), \Delta(1,3,3), \Delta(1,4,6), \\ &\Delta(2,1,3), \Delta(2,1,4), \Delta(2,2,1), \Delta(2,2,6), \Delta(2,3,5), \Delta(2,4,2), \\ &\Delta(1,5), \Delta(1,6), \Delta(3,1), \Delta(3,2), \Delta(4,3), \Delta(4,4), \Delta(2,2), \\ &\Delta(2,3), \Delta(3,4), \Delta(3,6), \Delta(4,1), \Delta(4,5) \} \end{aligned}$$

Lemma 2.1 The family \mathcal{F} is an edge clique cover of $K_{x,y,z}$. Moreover, \mathcal{F} is minimal and $\theta_e(K_{x,y,z}) = yz$.

PROOF: First, we show that \mathcal{F} is an edge clique cover of $K_{x,y,z}$. Let $R' = \{r'_1, \ldots, r'_x\} \subseteq R$ be a set of x rows and let $S' = \{s'_1, \ldots, s'_z\}$ be a set of z symbols in a (q+1)-semi latin square L of order y. Consider the edge $e = \{u_i, v_j\}$ in $K_{x,y,z}$, $i \in [x]$ and $j \in [y]$. Let $S_{i,j}$ denote the set of q+1 symbols at the intersection of r'_i and c_j . If $S_{i,j} \cap S' = \emptyset$, then $q+1 \leq q-r$, a contradiction as $r \geq 0$. Therefore there is an integer k such that $(r'_i, c_j, s'_k) \in L(R', C, S')$. Thus the clique $\Delta(i, j, k) \in \mathcal{F}$ covers the edge e.

Now set $e = \{u_i, w_j\}, i \in [x] \text{ and } j \in [z]$. Since each symbol of S' appears in each row of L(R', C, S'), there is an integer k such that $(r'_i, c_k, s'_j) \in L(R', C, S')$. Hence $\Delta(i, k, j) \in \mathcal{F}$ covers e. Finally, set $e = \{v_i, w_j\}, i \in [y]$ and $j \in [z]$. There is an integer $k \in [y]$ so that $r_k = c_i \circ s'_j$. If $r_k \in R'$, then certainly e is covered by a clique of order three in \mathcal{F} . Otherwise $r_k \in R \setminus R'$ and $\Delta(i, j)$ covers e.

We finish the proof by showing that yz is a lower and upper bound for $\theta_e(K_{x,y,z})$. Note that there are yz edges of the form $\{v, w\}$ where $v \in V$ and $w \in W$. Furthermore, there is no clique in $K_{x,y,z}$ that contains two edges of the form $\{v, w\}$. It follows that at least yzcliques are needed to cover the edges that contain end vertices in partitions V and W. Hence $\theta_e(K_{x,y,z}) \geq yz$. To show that yz is an upper bound for $\theta_e(K_{x,y,z})$, we need only to provide an edge clique cover of $K_{x,y,z}$ whose cardinality is yz. From above, \mathcal{F} is an edge clique cover of $K_{x,y,z}$. Since L contains precisely $y^2(q+1)$ triples and since symbols from $S \setminus S'$ appear precisely y times in L, \mathcal{F} is made of

$$y^{2}(q+1) - y(y(q+1) - z) = yz$$

triples. Hence $\theta_e(K_{x,y,z}) \leq yz$. Moreover, this shows that \mathcal{F} is a minimal edge clique cover of $K_{x,y,z}$.

To end this section we comment on a general minimal edge clique cover of $K_{x,y,z}$ when x = y.

Lemma 2.2 Let S be a minimal edge clique cover of $K_{y,y,z}$ and let $S, S' \in S$. If $|S \cap S'| = 2$, then $S = \{u, v, w\}$ and $S' = \{u, v, w'\}$ where $u \in U$, $v \in V$ and $w, w' \in W$.

PROOF: We may assume that |S| = 3 for each $S \in S$. Let $S, S' \in S$ such that $|S \cap S'| = 2$. Since |S| = yz (by Lemma 2.1) and since no clique contains two edges of the form $\{v, w\}$, no two cliques of S share an edge of the form $\{v, w\}$ where $v \in V$ and $w \in W$. Similarly, no two cliques share an edge of the form $\{u, w\}$ where $u \in U$ and $w \in W$. Hence $(S \cup S') \setminus (S \cap S') \subseteq W$.

3 Proof of main result

The following characterization of competition graphs [2] is used to show a lower bound for $k(K_{x,y,z})$.

Theorem 3.1 A graph G is the competition graph of an acyclic digraph if and only if there exists an ordering a_1, \ldots, a_n of the vertices of G and an edge clique cover $\{S_1, \ldots, S_n\}$ of G such that if $a_i \in S_j$, then i < j.

An equivalent way of stating Theorem 3.1 is to say that there exists an ordering a_1, \ldots, a_n of the vertices of G and an edge clique cover $\{S_1, \ldots, S_n\}$ of G such that $S_i \subseteq \{a_1, \ldots, a_{i-1}\}$ for each i.

Theorem 3.2 For integers x, y and z where $2 \le x \le y \le z$,

$$k(K_{x,y,z}) \ge yz - z - y - x + 3$$

Moreover, if x = y, then

$$k(K_{y,y,z}) \ge yz - 2y - z + 4.$$

PROOF: Let $k = k(K_{x,y,z})$ and let D denote an acyclic digraph such that $C(D) = K_{x,y,z} \cup I_k$. Note that S is an edge clique cover of $K_{x,y,z}$ if and only if S is an edge clique cover of $K_{x,y,z} \cup I_k$. Then, from Theorem 3.1, there is an ordering $a_1, \ldots, a_{x+y+z+k}$ of the vertices of $K_{x,y,z} \cup I_k$ and an edge clique cover $S = \{S_1, \ldots, S_{x+y+z+k}\}$ of $K_{x,y,z}$ such that $S_i \subseteq \{a_1, \ldots, a_{i-1}\}$ for each i. We may assume that the order of each non empty clique in S is three. Then $S_1 = S_2 = S_3 = \emptyset$ and so, by Lemma 2.1, $|S \setminus \{S_1, S_2, S_3\}| \ge yz$. Hence $x + y + z + k - 3 \ge yz$ and so $k \ge yz - x - y - z + 3$.

Suppose now that x = y and that, for the sake of contradiction, k = yz - 2y - z + 3. Then S_i is non empty for each $i \ge 4$, $S_4 = \{a_1, a_2, a_3\}$ and $S_5 \subset \{a_1, a_2, a_3, a_4\}$. So it must be that $|S_4 \cap S_5| = 2$. Without loss of generality, assume that $S_5 = \{a_2, a_3, a_4\}$. By Lemma 2.2, $a_1, a_4 \in W$. Let $l \ge 4$ be the largest integer such that $S_{l+1} = \{a_2, a_3, a_l\}$ and $a_l \in W$. Then $S_{l+2} = \{a_2, a_j, a_{l+1}\}$ or $S_{l+2} = \{a_3, a_j, a_{l+1}\}$, $j \in [l] \setminus \{2, 3\}$. In either case $|S_{l+2} \cap S_1| = 2$ or $|S_{l+2} \cap S_{j+1}| = 2$. But $a_{l+1} \in U \cup V$, contradicting Lemma 2.2. Hence $k \ge yz - 2y - z + 4$.

We now proceed to the main result. Henceforth L is a (q + 1)-semi latin square of order y such that $(r_i, c_j, s_k) \in L$ if and only if $i + j - 1 \equiv k \mod y$. Furthermore, we set $R' = \{r_1, \ldots, r_{x-1}, r_y\}$ and $S' = \{s_1, \ldots, s_z\}$ where $r'_i = r_i$ for $i \in [x-1]$, $r'_x = r_y$ and $s'_i = s_i$ for $i \in [z]$. For y = 5 and z = 13, the arrays below are L and L(R', C, S') respectively.

1,6,11	2,7,12	3,8,13	4,9,14	5,10,15
2,7,12	3,8,13	4,9,14	$5,\!10,\!15$	1,6,11
3,8,13	4,9,14	$5,\!10,\!15$	1,6,11	2,7,12
4,9,14	5,10,15	1,6,11	2,7,12	3,8,13
5,10,15	1,6,11	2,7,12	3,8,13	4,9,14

1,6,11	2,7,12	3,8,13	4,9	5,10
2,7,12	3,8,13	4,9	5,10	1,6,11
5,10	$1,\!6,\!11$	2,7,12	3,8,13	4,9

Proof of Theorem 1.3. Case 1: x = y.

In this case $r'_i = r_i$ for each *i*. We first order the vertices a_1, \ldots, a_{2y+z} of $K_{y,y,z}$ as

$$u_1, v_1, w_1, u_2, v_y, w_y, u_y, v_2, w_2, u_{y-1}, v_{y-1}, w_{y-1}, \dots, u_3, v_3, w_3, w_{y+1}, \dots, w_z.$$

Note that all vertices of $K_{y,y,z}$ appear in the vertex ordering. Next, we order 2y + z - 3 cliques of \mathcal{F} in the following way. The first 6 cliques are ordered as

$$\Delta_1 = \{u_1, v_1, w_1\}, \ \Delta_2 = \{u_2, v_y, w_1\}, \ \Delta_3 = \{u_1, v_y, w_y\},\$$

$$\Delta_4 = \{u_y, v_1, w_y\}, \ \Delta_5 = \{u_y, v_2, w_1\}, \ \Delta_6 = \{u_1, v_2, w_2\}$$

For $0 \le s \le y - 4$, the next 3y - 9 cliques are given as

$$\Delta_{3s+7} = \{u_{y-s-1}, v_2, w_{y-s}\},\$$

$$\Delta_{3s+8} = \{u_2, v_{y-s-1}, w_{y-s}\},\$$
and
$$\Delta_{3s+9} = \{u_1, v_{y-s-1}, w_{y-s-1}\}.$$

Finally, for $0 \le s \le z - y - 1$, the remaining z - y cliques are

$$\Delta_{3y-2+s} = \{u, v, w_{y+s+1}\}$$

where $u \in U$ and $v \in V$ are any vertices such that $\{u, v, w_{y+s+1}\} \in \mathcal{F}$.

Given the vertex and clique orderings above, we construct a digraph that shows that yz - 2y - z + 4 is an upper bound for $k(K_{y,y,z})$. We must first note that

$$\Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_i \subseteq \{a_1, a_2, \ldots, a_{i+3}\}$$
⁽²⁾

for $i \in [2y+z-3]$. This follows from the fact that $\Delta_1 = \{a_1, a_2, a_3\}, \Delta_2 \setminus \Delta_1 = \{a_4, a_5\}$ and $\Delta_i \setminus (\Delta_1 \cup \ldots \cup \Delta_{i-1}) = \{a_{i+3}\}$, where $3 \le i \le 2y+z-3$.

Since \mathcal{F} is a minimal edge clique cover, there are yz - 2y - z + 3 cliques in $\mathcal{F} \setminus \{\Delta_1, \ldots, \Delta_{2y+z-3}\}$. Set $\mathcal{F} \setminus \{\Delta_1, \ldots, \Delta_{2y+z-3}\} = \{T_1, \ldots, T_{yz-2y-z+3}\}$. Let D be the digraph with the following vertex set V and arc set A;

$$V(D) = \{a_1, \dots, a_{z+2y-3}\} \cup \{\alpha_0, \dots, \alpha_{yz-2y-z+3}\}$$
$$A(D) = \bigcup_{i=1}^{2y+z-4} \{(\delta, a_{i+4}) : \delta \in \Delta_i\} \cup \{(\delta, \alpha_0) : \delta \in \Delta_{2y+z-3}\} \cup \{yz-2y-z+3, \dots, yz-2y-z+3, \dots, yz-2y-z+2, \dots, yz-2, \dots, yz$$

From statement (2), the digraph D is acyclic. Because every clique in \mathcal{F} has a common out-neighbor in D, $E(C(D)) \subseteq E(K_{y,y,z})$. Moreover, the in-nighborhood of a vertex of D is a clique in \mathcal{F} . Therefore $E(K_{y,y,z}) \subseteq E(K_{y,y,z})$. It follows that $C(D) = K_{y,y,z} \cup I_{yz-2y-z+4}$. Hence, by Theorem 3.2,

$$k(K_{y,y,z}) = yz - 2y - z + 4.$$

Case 2: x < y.

In this case $r'_i = r_i$ for each $i \in [x-1]$ and $r'_x = r_y$. As in the previous case, we begin by ordering vertices and cliques in $K_{x,y,z}$. The vertex ordering a_1, \ldots, a_{x+y+z} of $K_{x,y,z}$ is

$$u_x, v_1, w_y, v_2, w_1, u_1, w_2, u_2, v_y, w_{y-1}, v_{y-1}, \dots, w_x, v_x, v_y$$

 $u_{x-1}, v_{x-1}, w_{x-1}, \dots, u_3, v_3, w_3, w_{y+1}, \dots, w_z.$

Next, we order x + y + z - 2 cliques of \mathcal{F} . The first 7 cliques are ordered as

$$\Delta_1 = \{u_x, v_1, w_y\}, \quad \Delta_2 = \{v_2, w_y\}, \quad \Delta_3 = \{u_x, v_2, w_1\},$$

$$\Delta_4 = \{u_1, v_1, w_1\}, \quad \Delta_5 = \{u_1, v_2, w_2\}, \quad \Delta_6 = \{u_2, v_1, w_2\}, \quad \Delta_7 = \{u_2, v_y, w_1\}$$

For $0 \le s \le y - x - 1$, the next 2(y - x) cliques in the ordering are given as

$$\Delta_{2s+8} = \{u_x, v_{y-s}, w_{y-s-1}\}, \text{ and} \\ \Delta_{2s+9} = \{u_1, v_{y-s-1}, w_{y-s-1}\}.$$

For $0 \le s \le x - 4$, the next 3x - 9 cliques are given as

$$\Delta_{3s+2(y-x)+8} = \{u_{x-s-1}, v_2, w_{x-s}\},\$$

$$\Delta_{3s+2(y-x)+9} = \{u_2, v_{x-s-1}, w_{x-s}\},\$$
and
$$\Delta_{3s+2(y-x)+10} = \{u_1, v_{x-s-1}, w_{x-s-1}\}.$$

Finally, for $0 \le s \le z - y - 1$, the remaining z - y cliques in the ordering are

$$\Delta_{2y+x-1+s} = \{u, v, w_{y+s+1}\},\$$

where $u \in U$ and $v \in V$ are any vertices such that $\{u, v, w_{y+s+1}\} \in \mathcal{F}$.

In this case note that

$$\Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_i \subseteq \{a_1, a_2, \ldots, a_{i+2}\}$$
(3)

for $i \in [z + y + x - 4]$. Set $\mathcal{F}' \setminus \{\Delta_1, \ldots, \Delta_{z+y+x-4}\} = \{T_1, \ldots, T_{yz-z-y-x+4}\}$. Let D be the digraph with the following vertex set V and arc set A;

$$V(D) = \{a_1, \dots, a_{z+y+x-4}\} \cup \{\alpha_0, \dots, \alpha_{yz-z-y-x+2}\}$$
$$A(D) = \bigcup_{i=1}^{z+y+x-3} \{(\delta, a_{i+3}) : \delta \in \Delta_i\} \cup \{(\delta, \alpha_0) : \delta \in \Delta_{z+y+x-4}\} \cup \bigcup_{i=1}^{yz-z-y-x+2} \{(\delta, \alpha_i) : \delta \in T_i\}.$$

It follows from statement (3) that D is acyclic. Furthermore $C(D) = K_{x,y,z} \cup I_{yz-z-y-x+3}$. Hence, by Theorem 3.2,

$$k(K_{x,y,z}) = yz - z - y - x + 3.$$

References

- [1] J.E. Cohen, Interval graphs and food webs: A finding and a problem, in: Document 17696-PR, RAND Corporation, Santa Monica, CA, 1968.
- [2] R.D. Dutton, R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317.
- [3] S.-R. Kim, Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math. 156 (2008) 3522-3524
- [4] J. Kuhl, Latin transversals and competition numbers for complete multipartite graphs. Submitted to Discrete Appl. Math.
- [5] R.J. Osput, On the computation of the competition number of a graph, SIAM J. Algebra. Discrete Methods 3 (1981) 420-428.

- [6] B. Park, S.-R Kim, Y. Sano, On competition numbers of complete multipartite graphs with partite sets of equal size, prepreint. RIMS-1644 October 2008. http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1644.pdf
- [7] B. Park, S.-R Kim, Y. Sano, The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares, Discrete Math. 309 (2009) 6464-6469.
- [8] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976)