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Abstract 

 
In this paper, we will investigate the existence of transversals in r-multi Latin squares, a generalization of 

the Latin square.  We will reveal values of r that guarantee the existence of a transversal.  In addition, we 

will also generalize David E. Woolbright's proof (which is specific to Latin squares) to determine a lower 

bound on the size of a maximal transversal in any r-multi Latin square.  We will also touch upon the 

existence of transversals on any given set of n symbols.  Finally, we will present many suggestions for 

future research regarding this intriguing mathematical construct. 

 

 

I. INTRODUCTION 

A. Statement of Problem 

We begin stating our problem of interest by defining important terms. 

1. Definitions of Important Terms 

A Latin square of order n is an n × n array of n symbols where each symbol appears exactly 

once in each row and once in each column.  Below is an example of a Latin square of order 5. 

1 2 3 4 5 

5 1 2 3 4 

4 5 1 2 3 

3 4 5 1 2 

2 3 4 5 1 

 

A Latin square of order n can also be defined as a set of 2n ordered triples where the triple 

( , , )i j s  refers to row i, column j, and symbol s.  If we label each unique row, column, and 

symbol with an integer from 1 to n, any Latin square  

{( , , ) | 1 , , }L i j s i j s n   
 
has the following three properties: 

(1) There is exactly 1 occurrence of each unique ordered pair ( , );i j   

(2) There is exactly 1 occurrence of each unique ordered pair ( , );i s
 

(3) There is exactly 1 occurrence of each unique ordered pair ( , ).j s
 



2 

 

A Latin square of order n is also equivalent to a proper n-coloring of the edges of the complete 

bipartite graph
,  n nK .  To show this, we begin by creating

,  n nK with the 2 partitions of vertices

1 2 1{ , ,..., , }n nA a a a a   and 1 2 1{ , ,..., , }n nB b b b b   .  Next, create a 1 to 1 mapping from each 

unique symbol in the Latin square to a unique color.  We do this by assigning each of the n 

unique symbols in the Latin square with a unique integer from 1 to n.  Then, we let

1 2 1{ , ,..., , }n nc c c c  be n distinct colors.  Finally, we color edge ( , )i ja b  in 
,  n nK  with color kc  if 

and only if cell ( , )i j  contains symbol k in the Latin square.  Figure 1 below illustrates this 

equivalence when 4n   .  Let the colors Red, Green, Blue and Yellow represent the symbols R, 

G, B, and Y, respectively.   

 

Figure 1.  A proper 4-coloring representation of a 4 × 4 Latin square. 

 

An r-multi Latin square of order n, a generalization of the Latin square, is an n × n array of  

nr  symbols where each entry (or cell) contains a set of r symbols and each symbol appears 

exactly once in each row and once in each column [7].  Thus, a 1-multi Latin square of order n is 

also a Latin square of order n.   



3 

 

Here is an example of a 3-multi Latin square of order 5. 

1  2  3 4  5  6 7  8  9 10  11  12 13  14  15 

7  8  10 1  2  9 13  14  15 3  4  5 6  11  12 

4  5  9 3  7  8 6  11  12 13  14  15 1  2  10 

12  14  15 10  11  13 1  2  3 6  8  9 4  5  7 

6  11  13 12  14  15 4  5  10 1  2  7 3  8  9 

 

The r-multi Latin square can also be defined as a set of 2n r ordered triples where the triple 

( , , )i j s  refers to row i, column j, and symbol s.  If we label each unique symbol with an integer 

from 1 to nr, any r-multi Latin square  

{( , , ) | 1 , ; 1 }R i j s i j n s nr       
 
has the following three 

properties: 

(1) There are exactly r distinct symbols tripled with each unique ordered pair ( , );i j  

(2) There is exactly 1 occurrence of each unique ordered pair ( , );i s
 

(3) There is exactly 1 occurrence of each unique ordered pair ( , ).j s
 

A partial transversal of an r-multi Latin square is a subset of the 2n r ordered triples (that make 

up the r-multi Latin square) such that no 2 ordered triples have the same row, column, or symbol.  

That is, any partial transversal 

{( , , ) | 1 , ; 1 }P i j s i j n s nr       
 
has the following three 

properties: 

(1) There is exactly 1 occurrence of each row i; 

(2) There is exactly 1 occurrence of each column j; 

(3) There is exactly 1 occurrence of each symbol s.  
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The length (or size) of a partial transversal is the number of ordered triples (or pairwise distinct 

symbols) in the set.  Below is an example of a partial transversal of length 3 in a 1-multi Latin 

square of order 4. 

A B C D 

B C D A 

C D A B 

D A B C 

 

If the length k of the partial transversal is maximized to the order of the Latin square where

k n   , then the partial transversal is called a transversal.  Note that the example above contains 

no transversals.  We will refer to any collection of n cells that meet requirements 1 and 2 above 

as a diagonal collection.  In other words, a diagonal collection of cells is a potential transversal 

in that the row and column requirements are met, but not necessarily the symbol requirement.  

For example, the main diagonal (A, C, A, C) in the 1-multi Latin square of order 4 above is a 

diagonal collection.  Highlighted below is an example of a transversal (as well as a diagonal 

collection) in a 1-multi Latin square of order 5.   

 

1 2 3 4 5 

5 1 2 3 4 

4 5 1 2 3 

3 4 5 1 2 

2 3 4 5 1 

 

Highlighted below is an example of a transversal in a 3-multi Latin square of order 5. 

 

1  2  3 4  5  6 7  8  9 10  11  12 13  14  15 

7  8  10 1  2  9 13  14  15 3  4  5 6  11  12 

4  5  9 3  7  8 6  11  12 13  14  15 1  2  10 

12  14  15 10  11  13 1  2  3 6  8  9 4  5  7 

6  11  13 12  14  15 4  5  10 1  2  7 3  8  9 
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It seems somewhat intuitive that a transversal is more likely to exist as the number of symbols 

per cell, which is r, is increased.  As shown in the example above, we may have multiple 

occurrences of symbols (i.e. 1, 2, 7, and 8) among a diagonal collection of cells and yet still have 

enough variety to obtain a complete transversal.   Of course, the increased likelihood of the 

existence of a transversal is easier speculated than proven.   

Much research has been done to establish a lower bound for the maximum length of a partial 

transversal in any Latin square of order n.  Thus far, every proven lower bound is significantly 

less than two widely known and undisputed conjectured values.  These are: 

 

Brualdi’s Conjecture: Every Latin square of order n  contains a partial transversal of length at 

least   1n .  

Ryser’s Conjecture: Every Latin square of odd order contains a transversal. 

 

In 1978, one of the more elegant results was shown by David E. Woolbright [14].  In this proof, 

Woolbright used the proper n-coloring of the complete bipartite graph representation of the Latin 

square to show that every Latin square of order n  contains a partial transversal of size at least 

n n .  Of course as n gets large, this result gets significantly less than the above conjectured 

values of n (for odd n) and 1n   (for even n).   

 

2. Questions to Answer 

Once research began, it became obvious that there are many unanswered questions about 

transversals in Latin squares, and even more so about transversals in r-multi Latin squares.   In 

addition, the act of researching itself led the way to even more questions which are presented in 
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the Suggestions for Further Study section.  In this paper, we will attempt to answer the following 

questions.   

1. How large does r need to be in order to guarantee the existence of a transversal in any r-

multi Latin square of order n? 

2. Can we generalize Woolbright’s proof to establish a lower bound for the maximum 

length of a partial transversal in any r-multi Latin square? 

3. Can we find a transversal on n specified symbols if r is big enough? 

 

B. Relevance of Problem 

For over 3000 years, the Latin square construct has been utilized in a variety of ways.  Its first 

known use was on amulets during the medieval Islamic time period to display letters from a 

name of God.  The first known written application of the Latin square in 1723 is known as the 16 

card trick [8].  Here, we must arrange all of the face cards (aces, jacks, kings, and queens) in a  

4 × 4 array such that each column and each row contains 1 card from each suit (clubs, diamonds, 

hearts, and spades) and 1 card from each face.  Amazingly, there are 6,912 ways to solve the 

puzzle and 20,922,789,881,088 ways to fail to solve the puzzle [11].  That is only about 33 

billionths of a percent!  Thus by pure guesswork, one has about a 17 times better chance of 

winning the Florida Powerball Lottery at about 571 billionths of a percent [14].  Here is a 

solution to the 16 card trick [11]: 

♠A ♥K ♦J ♣Q 

♥Q ♠J ♣K ♦A 

♣J ♦Q ♥A ♠K 

♦K ♣A ♠Q ♥J 
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The solution is actually a specific type of r-multi Latin square where no pair of symbols occurs 

more than once in each cell.  This is called a Simple Orthogonal Multi-Array (or SOMA) [3].  

Note that the arrangement above is also the superposition of 2 Latin Squares formed by the faces 

and the suits.  When the superposition of 2 Latin squares contains the 2n  unique combinations of 

symbols, the 2 Latin squares are said to be orthogonal (or Graeco-Latin).  Leonhard Euler 

defined this concept around 1779 while trying to solve the legendary “Problem of the 36 

Officers.” [8]   Similar to the problem above, here we wish to arrange 36 officers in a 6 × 6 array 

such that each column and each row contains 1 officer from 6 different ranks and 1 officer from 

6 different regiments.  It was not until 1901 when Gaston Terry showed by enumeration that 2 

orthogonal Latin Squares of order 6 do not exist.  Thus, the Problem of the 36 Officers has no 

solution.  In fact, it has been proved that orthogonal Latin squares of every order exist except for

2n   and 6.n     

Orthogonal Latin squares inspired interest in transversals [10].  One interesting theorem states 

that a Latin square has an orthogonal mate if and only if the Latin square can be decomposed into 

disjoint transversals.  This means that the Latin square contains n distinct transversals with no 

entries in common among the transversals.  There are many published research papers that 

investigate transversals in Latin squares.  There are even publications that explore a 

generalization of the transversal called a k-plex [9].  The generalization of the Latin square 

called an r-multi Latin square is a relatively new construct in the combinatorial sense.   However, 

there is an identical construct referred to as a semi-Latin square that was used extensively in 

statistical applications by a number of statisticians including R.A Fisher [1].  As demonstrated 

above, exploring the nature of transversals in r-multi Latin squares is indeed an intriguing, 

fruitful, and relevant area of research. 



8 

 

C. Literature Review 

Numerous papers have been published regarding transversals in Latin squares, but none (as far as 

this author has discovered) regarding transversals in r-multi Latin squares.  A major question that 

has remained unanswered for over 40 years is ”What is the upper lower bound for the maximum 

length of a partial transversal in any given Latin square?”  As mentioned earlier, every proven 

lower bound is significantly less than Brualdi’s and Ryser’s two widely known and undisputed 

conjectured values.  Both conjectures have been confirmed for orders 11 and below by 

enumeration [11].  Among the most popular proven lower bounds are found below in Table 1.  

 

Author(s) Proven Lower Bound Date 

 

Hatami and Shor [5] 

 

211.053logn n   
1982 

Woolbright [14] 

 n n  
1978 

Brouwer, Vries, and Wieringa [2] 

 n n  
1978 

Wang [12] 

 

9

11
n  

1978 

Drake [4] 

 

3

4
n  

1977 

Koksma [6] 
 

2

3
n  

1969 

 

Table 1. Lower Bounds for Maximal Partial Transversal Length in a Latin square of order n. 

 

Thus, it has been 30 years since a new lower bound has been well established (as far as this 

author has discovered).  In this paper, we chose to extend Woolbright’s elegant proof to 

accommodate for the r-multi Latin square, a generalization of the Latin square, to see if we can 

establish a lower bound for its maximum transversal.   
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II. MAIN BODY 

A. Values of r that Guarantee a Transversal  

We will first consider Question 1 which asks how large must r  be in order to guarantee the 

existence of a transversal.  We begin with a somewhat obvious, but powerful lemma that will 

allow us to easily prove further statements 

 

Lemma 1.1:  Any subset of size q r   cells from a diagonal collection in an r-multi Latin square 

of order n  contains a partial transversal of length q  . 

Proof: Suppose R is an r-multi-Latin square of order n.  Choose any diagonal collection D in R.  

Now, choose any q  cells from D.  We label the cells 1 2 1, ,..., ,q qC C C C  in no particular order.  

By definition, each cell is in a unique column and a unique row.  Without losing generality, we 

will say each cell kC  is in row ki  and column kj  .  From 1C  , we choose any symbol 1s  .  

Clearly 1 1 1{( , , )}i j s  is partial transversal of length 1.  Now if r   , from 2C  , choose any 

symbol 2 1s s   .  This symbol 2s must exist as there are r   distinct symbols within each cell.  

Thus, we have a partial transversal of length 2, namely 1 1 1 2 2 2{( , , ),( , , )}i j s i j s  .  If 3r  , for 

induction, suppose 1 2 1, ,..., ,k kC C C C  (k q  contains a partial transversal of length k  , namely

{( , , ) |1 }x x xi j s x k     . Now, from 1kC   , choose any symbol 1 1 2 1{ , ,..., , }k k ks s s s s    .  This 

symbol 1ks  must exist as there are r k   distinct symbols within each cell.  Thus, we have a 

partial transversal of length 1k   , namely {( , , ) |1 1}x x xi j s x k      .  Hence, by induction, R 

contains a partial transversal of length q r   , namely {( , , ) |1 }x x xi j s x q     . □ 
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Theorem 1.2: Every r-multi Latin square of order n r   contains a partial transversal of size r .  

Proof: Let P  be the set of cells along the main diagonal.  Choose any r of these cells.  By 

Lemma 1.1, P contains a partial transversal of length r. □ 

 

Theorem 1.3: Every r-multi Latin square of order n r   contains a transversal. 

Proof: Let T  be the set of cells along the main diagonal.  By Lemma 1.1, P contains a partial 

transversal of length n.  By definition, this partial transversal is a transversal. □ 

 

The above theorems allow us to easily establish a lower bound on the length of a partial 

transversal as stated below in Corollary 1.4. 

 

Corollary 1.4: Every r-multi Latin square of order n contains a partial transversal of size  

min{r, n}.□  

 

Now, by implementing a simple contradictory argument, we can decrease r to 1n  and still 

obtain a transversal as shown below. 

 

Theorem 1.5:  Every r-multi Latin square of order n where 1r n   contains a transversal. 

Proof:  Suppose R is an r-multi-Latin square of order n where   1r n  .  We label the symbols in 

the first row of R in sequential order as follows.  The contents of cell 

    1,    1        ,2, ,| 1j j r k k r      for all   1,2, , .j n   

1,  2,  3,   r   1,  2,   2r r r     2 1,  2 2,   3r r r     …    1 1,  1 2,   n r n r nr       

...     
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Now, for the purpose of contradiction, suppose that R does not contain a transversal.  The only 

way this can be achieved is if every cell of any given diagonal collection in R contains the exact 

same contents.  Otherwise, a transversal exists.  Now, note cell (2, 1) is in 2 distinct diagonal 

collections with both (1, 2) and (1, 3).  But (1, 2) and (1, 3) must contain different contents.  

Thus, every cell of any given diagonal collection of cells cannot have the same contents.  Hence, 

R must contain a transversal. □  

 

Once we decrement r again to 2n   , the existence of a transversal becomes a bit more difficult 

to prove as shown below. 

 

Theorem 1.6:  Every r-multi Latin square of order n where 2r n   contains a transversal. 

Proof:  Suppose R is an r-multi-Latin square of order n where   2r n  . 

Case 1r  :  It is well known that any 1-multi Latin square of order 3 (or Latin square of order 3) 

contains a transversal. 

Case 2r  :  We begin by showing that if 4 distinct symbols lie within 2 cells in a diagonal 

collection, a transversal must exist.  Without loss of generality, we may assume the diagonal 

collection lies along the main diagonal and the cells may be placed in any order.  We divide this 

case into the following 4 subcases. 

Subcase 1:  At least 5 unique symbols lie in the diagonal collection. 

Thus, the symbols in the diagonal collection must take on a form isomorphic to 

1  2    

 3  4   

  5  A  

   B  C 
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To obtain a transversal, we first choose the ordered triple  3,3,5 which refers to symbol 5 in 

row 3 and column 3.  Next, symbol B or symbol C must be different from symbol 5.  Call this 

symbol X and choose the ordered triple  4,4, X  .  Next, symbol 1 or 2 must be different from 

symbol X.  Call this symbol Y and choose the ordered triple  1,1,Y  .  Next, symbol 3 or 4 must 

be different from symbol X.  Call this symbol Z and choose the ordered triple (2,2, )Z  .  Hence, 

we have the transversal         1,1, , 2,2, , 3,3,5 , 4,4,Y Z X  . 

Subcase 2:  Exactly 3 cells within the diagonal collection contain the same symbols.   

Thus, the diagonal collection must take on a form isomorphic to  

1  2    

 1  2   

  1  2 A  B 

  C  D 3  4 

 

Note that , , , {1,2}A B C D   .  Also, note that either symbol C or symbol D must be different 

symbol A.  We will call this symbol X.  Hence, we have the transversal

        1,1,1 , 2,2,2 , 3,4, , 4,3,A X  . 

Subcase 3:  Exactly 2 cells within the diagonal collection contain the same symbols and Subcase 

1 does not apply.   

Thus, the diagonal collection must take on a form isomorphic to 

1  2    

 1  2   

  3  4  

   A  B 

 

Note that , {1,2,3,4}A B   or else Subcase 1 applies.  In addition { , } {1,2}A B   or else more than 

exactly 2 cells contain the same symbols.  So at least one of the symbols A or B must be different 
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from symbol 1 and symbol 2.  Call this symbol X so {1,2}X   .  One of the symbols 3 or 4 must 

not be equal to X.  Call this symbol Y.  Hence, we have the transversal

        1,1,1 , 2,2,2 , 3,3, , 4,4,Y X  . 

Subcase 4:  All other cases that do not follow Subcases 1, 2, or 3. 

Thus, the diagonal collection must take on a form isomorphic to 

1  2    

 3  4   

  A  B  

   C  D 

 

Note , , , {1,2,3,4}A B C D   or else Subcase 1 applies.  In addition, 

{ , },{ , } {1,2},{3,4}{ }A B C D    or else Subcase 2 or Subcase 3 applies.  So if we examine the set

{ , }A B  , exactly one of the symbols, call it X, must be either 1 or 2.  Let {1,2}\X X  .  

Similarly, exactly one of the symbols in the set { , }C D  , call it Y, must be either 3 or 4.  Let

{3,4}\Y Y   .    Hence, we have the transversal         1,1, , 2,2, , 3,3, , 4,4,X Y X Y  . 

Now that we have shown a transversal exists if 4 distinct symbols lie within 2 cells of a diagonal 

collection, next we will show R contains such a diagonal collection.  We label the symbols in the 

first row in sequential order as follows. 

1  2 3  4 5  6 7  8 

     

X Y     

     

 

By definition, the first column of R must contain exactly 1 occurrence of both symbols 3 and 4.  

Thus, at least one (and at most 2) of the cells      1,2 ,  1,3 ,  or 1,4  contains symbols

, {3,4}X Y  .  This cell combined with  2,1
 
(containing symbols 3, 4) is a subset of cells in a 
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diagonal collection.  Hence, 4 distinct symbols lie within 2 cells in a diagonal collection, and R 

contains a transversal.  

Case 3r  :  Examine the main diagonal.  By Lemma 1.1, cells       1,1 ,  2,2 ,   ,  ,r r must 

contain a partial transversal P of length r.  Now, examine the lower right 2 × 2 block of cells in 

R.  This block of cells must contain exactly 2r pairwise distinct symbols in each column and 

each row.  So one of the 2 diagonal collections of the 2 × 2 block must introduce at least 

2

2 2

r r r
  (if r is even) or 

2 1 1

2 2

r r r  
  (if r is odd) symbols not in P.  Specifically, since

3r  , a diagonal collection of the 2 × 2 block exists that contains at least 2 symbols (in each 

cell) not in P.  Hence, 1 unique symbol from each of these 2 cells combined with P form a 

transversal. □    

I do believe r  could still be reduced significantly and we could still obtain a transversal.  I say 

this as the above proofs do not take advantage of every constraint that is placed on each cell by 

every other cell.  Even if two cells are not in the same row or column, constraints are still 

imposed as a neighbor in one cell’s row is also a neighbor in the cell’s column and vice-versa. 

 

B. Generalizing Woolbright’s Proof 

Next, we consider Question 2 which asks if we can generalize David E. Woolbright’s proof in 

order to establish a lower bound for the maximal length of a partial transversal in any r-multi 

Latin square of order n.  Woolbright used the proper n-coloring of a complete bipartite graph 

representation to establish a lower bound of n n   for the maximal length of a partial 

transversal in any Latin square of order n.  In order to generalize the proof, we use a proper  

nr-coloring of a bipartite multigraph as Theorem 2.1 below explains. 
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Theorem 2.1: Any r-multi Latin square of order n contains a partial transversal of length at 

least
2 2(1 ) (1 ) 4

2

n nr n nr n r     
   . 

Proof: Let R be any r-multi Latin square.  Note that it is equivalent to a proper nr-coloring of a 

bipartite multigraph M where exactly r distinctly colored edges connect each unique pair of 

vertices constructed from exactly 1 vertex from each of the partitions 1 2 1{ , ,..., , }n nA a a a a   and

1 2 1{ , ,..., , }n nB b b b b   .  Thus, a partial transversal P of size p is equivalent to p distinctly colored 

parallel edges in M.  Let P be a partial transversal in M where the size of P is at a maximum 

value of p.  Let E be the collection of nr edges that correspond to a diagonal collection 

containing P.  Without loss of generality, we will rename the vertices in A and B such that

{( , ) | 1,2,..., }i iE a b i n    and that {( , ) | 1,2,..., }i iQ a b i p    is a set of p edges with pairwise 

distinct colorings.  Since P is a partial transversal of maximal size in R, Q is a maximal 

collection of parallel edges in M with pairwise distinct colorings.  Let 1 2 1{ , ,..., , }nr nrC c c c c   be 

nr distinct colors where 1 2, ,..., nr pc c c   are the colors that do not occur in Q.   

Let 1 2, ,..., kA A A  and 1 2, ,..., kB B B  be 2 sequences of sets of vertices in A and B such that: 

(1) 1 1 1{ , ,..., }n n pA a a a    , and 1 1 1{ , ,..., }n n pB b b b    , 

(2) 1i iA A   and 1i iB B    , 

(3) 1 1\ | \ |i i i iA A B B n p      , 

(4)  the nr p   edges with vertices in 1 \i iB B which are colored ic  all have vertices in iA 
,
 

(5)  and any edge ( , )a b  such that ia A   and 1b B   is not colored jc  if i j nr p     . 
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We show that if 1 2, ,..., kA A A  and 1 2, ,..., kB B B  are sequences with the 5 properties above and if

1k nr p     , then we can always construct sets 1kA   and 1kB   such that the sequences 

1 2 1, ,..., kA A A   and 1 2 1, ,..., kB B B   also follow the 5 properties above.  If 1k nr p     , construct

1kA   and 1kB   as follows.  Consider the ( )k nr p   edges with vertices in kA which are colored

kc  .  None of these edges have a vertex in 1B  because of (5) so at least nr p   of these edges 

must have a vertex in \ kB B  .  Choose these nr p   edges and let 1 \k kB B  be the vertices of 

these edges which are in B.  Let 1 1{ | ( , ) and \ }k k i i i i k kA A a a b Q b B B         .  Since these 

sequences follow properties (1), (2), (3), and (4), we need only to verify property (5).  For 

contradiction, suppose ( , )a b  is any edge in Q with
1 \j jb B B   , i j k    , and there is an edge 

*( , )a b  colored jc  where *

ja A   .  As a consequence, if ( , )a b  is in Q with 1 \j jb B B   ,

i j k    , then there exist edges 1 1 2 2( , ),( , ),..., ( , )s sa x b y x y x y    in Q such that the edges

2 1 3 2 1, ),( , ),..., ( , ),( , )s s sx y x y x y z y  are colored
1 2
, ,...,

sj i i ic c c c   where 1 2 ... sj i i i     

and 1z A   .  Now, suppose ( , )e a c   is an edge colored , 1 ,mc k m nr t       with 1ka A   

and 1c B   .  By (5), ka A   so 1 \k ka A A   .  If ( , )a b  is the edge in Q containing a  , then

1 \k kb B B   .  Hence, there exist edges 1 1 2 2( , ),( , ),..., ( , )s sa x b y x y x y    in Q such that the 

edges 2 1 3 2 1, ),( , ),..., ( , ),( , )s s sx y x y x y z y  are colored
1 2
, ,...,

sk i i ic c c c   where

1 2 ... sk i i i      and 1z A   .  But if we remove the s  edges 1 1 2 2, ), ( , ),..., ( , )s sx y x y x y 

from Q and replace them with the 1s   edges 2 1 3 2 1( , ), , ),( , ),..., ( , ),( , )s s se a c x y x y x y z y    , we 

have a set of 1p   parallel edges with pairwise distinct colorings.  This contradicts the 

supposition that the maximum number of parallel edges with pairwise distinct colorings is p  .  
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Hence, the extended sequences we have constructed follow property (5).  Finally, since 1A  and

1B  as defined above follow all 5 stated properties, they can be extended to the sequences

1 2 1, ,..., nr pA A A    and
1 2 1, ,..., nr pB B B   which follow the same 5 properties.  Since

1| \ |i iA A n p    , clearly ( )( 1)n n p nr p      .  Thus, 2 2(1 ) 0p p n nr n r      and 

2 2 2 2(1 ) (1 ) 4 (1 ) (1 ) 4

2 2

n nr n nr n r n nr n nr n r
p n

           
     . □ 

 

Now, by substituting the values 1, 2, and 3 for r in Theorem 2.1, we can show Corollaries 2.2, 

2.3, and 2.4, respectively. 

 

Corollary 2.2:  Any 1-multi Latin square (or Latin square) of order n contains a partial 

transversal of length at least 0.5 0.25n n     .□ 

 

Corollary 2.3:  Any 2-multi Latin square of order n contains a partial transversal of length at 

least 20.5 0.25 1.5 0.25n n n      .□ 

 

Corollary 2.4:  Any 3-multi Latin square of order n contains a partial transversal of length at 

least 20.5 2 0.25n n n      .□ 

 

As you can see, the length of a required partial transversal increases each time r is increased.  

Figure 2 below is a plot comparing these three results to Woolbright’s original result as well as 

the result when r = 10,000,000.  It appears that as r approaches infinity, the lower bound on 
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maximal partial transversal length p approaches n.  Also, our result concerning 1-multi Latin 

Squares (or Latin squares) slightly improves upon Woolbright’s original result (as it appears 

Woolbright elected to drop a term to simplify his result to the more elegant    n n ).  

   p 

 n 

Figure 2.  Partial Transversal Length p versus r-multi Latin Square order n. 

 

As speculated, next we will show the result of Theorem 2.1 is always less than the order n.  We start with 

an obvious statement. 

 

 

 

Woolbright’s Result 

r = 1 

r = 2 

r = 3 

r = 10000000 



19 

 

2 2

2

2 2 2

2 2

2 2

2 2

2 2

0

2 (2 2 ) 4

(1 ) (1 ) 4

1 (1 ) 4

1 (1 ) 4 0

1 (1 ) 4 2

1 (1 ) 4

2

n

n n r n r

n nr n r

n nr n nr n r

n nr n nr n r

n nr n nr n r

n nr n nr n r n

n nr n nr n r
n



  

    

       

      

       

       

     
 

  

Thus, the result obtained in Theorem 2.1 can never guarantee a transversal. 

 

C. Transversals on any n Symbols 

Finally, we consider Question 3 which asks can we find a transversal on n specified symbols if r 

is large enough.  Due to the complexity of this question and limited time, we will answer this 

question for orders 1n   and 2n   only.  We leave all other orders as a challenge for the reader. 

 

Theorem 3.1:  An r-multi Latin square of order 1 contains a transversal on any 1 symbol. 

Proof: Let s   be any symbol in cell (1,1) .  Clearly, {(1,1, )}s  is a transversal. □ 

 

Theorem 3.2:  An r-multi Latin square of order 2 does not contain a transversal on any 2 

symbols. 

Proof: Let R  be an r-multi Latin square of order 2.  Choose any symbol 1s  from cell (1,1)  and 

any symbol 2s  from cell (1,2) .  These 2 symbols are not the same since they reside in the same 

row.  In addition, 1s  does not reside in (1,2)  or (2,1) .  Furthermore, 2s  does not reside in (1,1)  

or (2,2) .  Hence, a transversal does not exist with symbols 1s  and 2s  .□ 
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III. CONCLUSIONS 

A. Summary: Interpretation 

In conclusion, we successfully addressed all questions posed to a certain degree.  We have 

shown any r-multi Latin square contains a transversal if 2r n    .  However, I feel this could 

still be reduced dramatically and transversals will still exist.  During research, an r-multi Latin 

square (where 2r  ) without a transversal was never discovered and seemed difficult, if not 

impossible, to create. 

We did successfully extend Woolbright’s proof to establish a lower bound for the maximal size 

of a partial transversal in any r-multi Latin square.  The plot in Figure 2 shows how this result 

compares to Woolbright’s original result for varying values of r.  We also showed that the result 

in Theorem 2.1 cannot guarantee any transversals as the lower bound on maximal partial 

transversal length established here is always less than n.  Consequently, min{ , }n r  , the result 

shown in Corollary 1.4, is a higher and therefore better lower bound on partial transversal length 

when r n .   

We also began to answer the question of whether or not transversals exist on any given set of n 

symbols if r is large enough.  Due to limited time and the complexity of the question, we could 

only completely answer this question for orders 1 and 2.  We did discover that it is true for all 

values of r with an order of 1, and it is false for all values of r with an order of 2.  The remaining 

orders remain a mystery. 

 

B. Suggestions for Further Study 

Here is a list of questions that remain unanswered and can provide hours of fun research for 

those ready for a challenge. 
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1) Can we always find a transversal in an r-multi Latin square on any n symbols if r is large 

enough?  We of course answered this question for the simplistic orders of 1 and 2.  What 

about if 3r  ? 

2) By now, we are familiar with Brualdi’s and Ryser’s conjectures regarding even and odd 

order Latin squares.  Are there any similar conclusions or conjectures we can make 

regarding the size of partial transversals in even and odd order r-multi Latin squares?  

What about even and odd r? 

3) During research, we discovered creating or finding an r-multi Latin square where 2)r   

is a rather difficult, if not impossible, task.  Are there any examples of r-multi Latin 

squares where 2)r   without transversals?   Can some computer code be written to 

conduct a systematic search for such an r-multi Latin square? 

4) Can we always ‘extract’ a Latin Square from an r-multi Latin square?  That is, can we 

always strategically choose exactly one symbol from each cell to form a Latin square?  If 

this can be done, by what method, and how many disjoint Latin squares can we obtain?  

Furthermore, IF we can show that at least 2 orthogonal Latin Squares can be extracted 

from an r-multi Latin square, then a transversal must exist as mutually orthogonal Latin 

squares require the presence of disjoint transversals. 

5) What is a formula ( , )N r n  to obtain the number of possible r-multi Latin squares of order 

n?  This question is still also open for traditional Latin squares as well. 

6) What are the bounds on the number of transversals in an r-multi Latin squares of order n?  

 

As you can see, many questions remain regarding r-multi Latin squares.  We hope the reader 

accepts the challenge of addressing at least 1 of them. 
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