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Three-decade-old research suggests that although regression coefficients obtained with

ordinary least squares (OLS) are optimal for fitting a model to a sample, unless the N over

which the model was estimated is large, they are generally not very much superior and

frequently inferior to equal weights or unit weights for making predictions in a validating

sample. Yet, that research has yet to make an impact on presidential elections forecasting,

where models are estimated with fewer than 25 elections, and often no more than 15. In this

research note, we apply equal weights to generate out-of-sample and one-step-ahead

predictions in two sets of related presidential elections models, Fair’s presidential equation

and the fiscal model. We find that most of the time, using equal weights coefficients does

improve the forecasting performance of both.

1 Introduction

In a recent paper, Hogarth (2006) revisits three-decade-old findings by himself and others
showing that although regression coefficients obtained with ordinary least squares (OLS)
are optimal for fitting a model to a sample, unless the N over which the model was esti-
mated is large, they are generally not superior and often inferior to equal weights or unit
weights for making predictions in a validating sample. Yet, that research has yet to make an
impact on economics—or, more to the point of this research note, presidential elections
forecasting.

Drawing inter alia on several of the studies Hogarth surveyed, in this paper we briefly
summarize the case for equal weights coefficients in forecasting. Next, we apply equal
weights to out-of-sample and one-step-ahead predictions in two related presidential elec-
tions models, Fair’s equation and the fiscal model. Fair (1978) pioneered forecasting
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presidential elections with a regression model that relies on ‘‘fundamentals’’ (Nordhaus
2006), not polling data. So does the fiscal model, a recent newcomer to the field of elections
forecasting, although it saw light as an explanatory model only a few years after Fair’s
(Cuzán and Heggen 1984). In its present version, the fiscal model borrows several of
its variables from Fair’s, and for that reason has been variously characterized as a ‘‘variant’’
(Nordhaus 2006), ‘‘extension’’ (Jones 2008), or ‘‘amended version of Fair’s equation’’
(Campbell and Lewis-Beck 2008). For an earlier comparison on the fitting and forecasting
performance of the two, see Cuzán and Bundrick (2005). In this paper, we show that al-
though the results are not all in the same direction, using equal weights coefficients gen-
erally improves the forecasting performance of both models.

2 The Case for Equal Weights Coefficients in Predictions

The case for using equal weights regression models in making predictions when the num-
ber of observations is small has been made over the last four decades (Armstrong 1985,
Chap. 8; Dana and Dawes 2004; Dawes 1979; Dawes and Corrigan 1974; Einhorn and
Hogarth 1975; Schmidt 1971;Weiner 1976). Very summarily, the argument goes as follows:
Coefficients calculated with OLS multiple regression procedures are optimal for fitting
a model to existing data, that is, to estimate a ‘‘measurement model,’’ but often these same
coefficients will not do as well as equal weights in a ‘‘forecasting model,’’ one designed to
make predictions in a new sample. (The terminology is from Armstrong 1985, 219). This is
becauseamodelwith ‘‘optimal’’ coefficientsusesupdegreesoffreedomwitheachadditional
regressor, is affected by outliers, fits some of the noise in the data, and is sensitive to corre-
lationsamong thepredictors, andotherviolationsofassumptionsofmultiple regression.This
shrinkage also occurs in out-of-sample and one-step-ahead predictions. Assigning equal
weights to all coefficients avoids these problems.Usually,modeling the samedatawith equal
weights coefficients results in a small loss offit, but this is offset by fewer prediction errors or
a smaller mean absolute error (MAE) when the model is applied to a different sample.

The minimum N at which OLS-estimated weights have been found to perform better at
prediction has been variously estimated. Claudy (1972) sets N at not less than 200. How-
ever, other researchers condition it on the number of predictors in the initial model. For
example, Dawes and Corrigan (1974) place it at between 20:1 and 25:1. Still others say that
the threshold depends not only on this ratio but also on the fit of the initial OLS regression
model. Einhorn and Hogarth (1975) suggest a ratio of 10:1 for well-fitting models. This
estimate is close to Schmidt’s (1971), who found that when predictors are four or fewer and
N < 50, unit weights outperform optimal weights regardless of initial model fit. Consid-
ering that presidential elections forecasting models are estimated with fewer than 25 cases
and in some cases with no more than 15, and that the number of predictors ranges anywhere
from three to seven, resulting in an average ratio of 4:1 (Cuzán and Bundrick 2005), these
estimates are sobering indeed.

The literature suggests several ways for developing equal weights models. Two ‘‘fami-
lies’’ of methods are most relevant for our purposes. In both, all predictors are so aligned as to
have a positive effect on the dependent variable and either raw or normalized scores (with
a mean of 0 and a variance of 1) are used for the regressors and/or the dependent variable. In
one approach, the unit weight method, all coefficients are assigned a value of 1 (1 and2 are
used to maintain a positive effect between regressor and dependent variable). In another,
equal weights are utilized—with the weights arbitrarily picked by the investigator, drawn
at random, or selected with a ‘‘restricted’’ OLS regression procedure in which ‘‘all the
regression coefficients are restrained to be equal’’ (Einhorn and Hogarth 1975, 184).
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We experimented with various combinations of each method. Our best results were
obtained by normalizing only the regressors and using an OLS regression procedure to
find the best fit under the constraint that the coefficients be equal (but not necessarily
one). In this case, ‘‘best results’’ refer to the out-of-sample and one-step-ahead predictions
generated by the model across the sample data set, sincewe do not have the luxury of taking
a validating sample on which to apply and judge the model.

3 Applying Equal Weights to Fair’s Equation and the Fiscal Model

Variable definitions and specifications for Fair’s presidential vote equation, as well as for
the fiscal model, are shown in Table 1. In both, the dependent variable is VOTE2, the per-
cent of the two-party vote going to the incumbent, the president or his party’s candidate.

Fair’s equation consists of seven regressors. The first three are economic: GROWTH,
the expected annualized rate of per capita growth through the first three quarters of the
election year; GOODNEWS, the number of quarters during the presidential term when

Table 1 Variable definitions

Variable Definition and measurement

VOTE2 Percent of the two-party vote won by the incumbent party candidate,
except that in the 1924 election Fair assigned 23.5% of the Lafayette
vote to President Coolidge and the rest to the Democratic candidate.

GROWTH The ‘‘growth rate of real per capita GDP in the first three quarters of the
election year (annual rate).’’

GOODNEWS The ‘‘number of quarters in the first 15 quarters of the administration in
which the growth rate of real per capita GDP is greater than 3.2% at an
annual rate except for 1920, 1944, and 1948, where the values are zero.’’

ALLNEWS ALLNEWS 5 GOODNEWS, except that in 1920, 1944, and 1948, the
actual values are entered. We thank Prof. Fair for sharing them with us.

INFLATION The ‘‘absolute value of the growth rate of the GDP deflator in the first 15
quarters of the administration (annual rate) except for 1920, 1944, and
1948, where the values are zero.’’

PERSON ‘‘PERSON 5 1, if the incumbent president is running for election and
0 otherwise.’’ Note, though that ‘‘Ford was not counted as an incumbent
running again because he was appointed vice president rather than
running on the original ticket.’’

DURATION ‘‘DURATION5 0 if the incumbent party has been in power for one term,
1 if the incumbent party has been in power for two consecutive terms,
1.25 if the incumbent party has been in power for three consecutive
terms, 1.50 for four consecutive terms, and so on’’

PARTY PARTY5 1 if the Democrats occupy theWhite House, and PARTY521
if the Republicans are the incumbents.

WAR ‘‘WAR 5 1 for the elections of 1920, 1944, and 1948 and 0 otherwise.’’
FISCAL Fiscal policy: expansionary (1) or cutback (21):

FISCAL 5 1 if F1 > 0 and F2 > 0
FISCAL 5 21 if F1 < 0 or F2 < 0
FISCAL 5 0 if F1 5 0 and F2 5 0 (there is no such case in the data).

FPRIME FPRIME: expansionary (1) or contractionary (2):
FPRIME 5 1 if F1 > 1
FPRIME 5 21 if F1 < 1

Note. All quotes are from Fair (2006).
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GROWTH exceeds 3.2%; and INFLATION, the absolute change in the price level during
the presidential term. Also included are four political variables: PERSON, which stands for
whether the president himself is a candidate for reelection; his PARTY, Democrat (11) or
Republican (21); DURATION, a weighted index of the number of consecutive terms the
incumbents have controlled the White House; and WAR. Fair adjusts two of his three eco-
nomic variables, INFLATION and GOODNEWS, assigning a value of 0 in three ‘‘war’’
years (1920, 1944, and 1948). Fair’s expectations are that GROWTH, GOODNEWS, and
PERSON have a positive effect on the vote and that INFLATION, DURATION, and
PARTY have a negative effect. WAR is a control variable.

The fiscal model consists of five regressors. Three are borrowed from Fair’s data set:
GROWTH, GOODNEWS, and DURATION. However, in the case of GOODNEWS, the
real values of the variable are restored in the war years. Thus, we convert it into ALL-
NEWS. Also included in the fiscal model is the PARTY of the incumbents because not
only Fair but Alessina and Rosenthal (1995), too, find that historically Republicans have
done better than Democrats at the polls. This is purely an empirical control.

The fifth and last factor in the fiscal model, what distinguishes it from every other pres-
idential elections model, is a measure of spending policy: the change in the ratio of federal
outlays to gross domestic product (GDP) between election years (F). Note that this variable
tracks relative, not total spending. The federal budget may grow in absolute terms but fall
or remain constant in relation to the economy. In the past, we have measured the change in
F with FISCAL, a binary variable constructed with F1 and F2, respectively, the first and
second derivative of F. If F1 > 0 and F2 > 0, this means that in the current term, F has
increased at the same or faster rate than in the previous administration. In those cases, fiscal
policy is labeled ‘‘expansionary,’’ and FISCAL is coded 11. On the other hand, if F1 < 0,
regardless of the value of F2, this indicates that F has contracted since the last election.
Also, if F1 > 0 and F2 < 0, this shows that in the current term F has grown at a slower rate
than in the previous term; in other words, its rate of growth has decelerated. Both are con-
sidered cases of fiscal cutback, and FISCAL is coded 21. (The case where F1 5 0 is the-
oretically possible but does not occur in the data set.) More recently, we have experimented
with a simpler measure, FPRIME, also a binary variable that takes the value of 1 if F1 is
positive (fiscal policy is ‘‘expansive’’) and 21 if it is negative (fiscal policy is ‘‘contrac-
tionary’’). With either version of the fiscal model, the incumbents are expected to win re-
election if fiscal policy contracts and to lose if it expands. For the theoretical rationale, see
Cuzán and Bundrick (2008) and Cuzán, Heggen, and Bundrick (2009). All other variables
are hypothesized to behave as in Fair’s model.

For the purpose of forecasting, both models are estimated with all elections starting with
that of 1916. As shown in Table 2, all three models have a reasonably good fit with the data.
In terms of both the MAE of the in-sample predictions and the Hit Rate (the percent of
correct predictions), the fiscal model with FPRIME performs best. It missed only three
elections, all close contests (where 48 < VOTE2 < 52), whereas the other two missed
at least one election that was nowhere close (1992 or 2008).

Parenthetically, it may be wondered why we evaluate the models on the Hit Rate as well
as the MAE. It seems to us that for some purposes it is more desirable that a model be able
to pick the winner ahead of time as opposed to just having the smaller MAE. We submit
that, given the choice, those whose overriding interest lies in who will be in the White
House, namely the media, lobbyists of all sorts, and foreign governments, prefer a model
with the highest percentage of hits over one with the lowest MAE.

As mentioned, we experimented with several equal weights methods for all three mod-
els. Here we report only the results obtained from the best-performing method. The
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coefficients for each of the three models were estimated using OLS regression on normal-
ized regressors, all so aligned as to have a positive effect on VOTE2, with the added con-
straint of ‘‘equal weights,’’ that is, that they all have the same influence on VOTE2 (see
Table 3 for the results). All coefficients are statistically significant and in the hypothesized
direction. As expected, compared to their OLS counterparts, the equal weights models do
not fit the data as well. Across the three models, the R2 is slightly lower and the in-sample
predictionMAEs higher. However, in two of the three models (Fair’s equation and the fiscal
model with FPRIME), the equal weights method yields more hits.

Next, we compare the performance of the OLS and equal weights variants of thesemodels
in out-of-sample forecasting. To do this, all models were reestimated 24 times, each using
N 2 1 elections, sequentially; in turn, each of the 24 models was used to ‘‘predict’’ the
election outcome omitted from those over which it was calibrated. The results are shown in
Table 4. Across all three cases, equal weights models outperformed their OLS counterparts,
incurring smaller MAEs and in two cases more correct predictions. The largest improve-
ment is obtained with Fair’s equation, where the number of miscalls is slashed in half. In
fact, the number of hits obtained with equal weights is greater than that of the model’s
original in-sample showing using standard OLS: 21 versus 19.

Finally, we look at the performance of both sets of models, respectively, with optimal
and with equal weights, in one-step-ahead forecasting. In order to allow enough data to fit
the optimal OLS models, the series starts with the 1952 election. We first estimated all six

Table 2 Fair’s equation and two versions of the fiscal model compared. Dependent variable: VOTE2
(incumbent’s share of two-party vote); t-values in parenthesis (all significant at .05 or less); in-sample

predictions 1916–2008 (N 5 24)

Variable

Model

Fair’s equation

Fiscal model with

FISCAL FPRIME

FISCAL 22.04 (23.68)
FPRIME 22.17 (25.20)
DURATION 23.29 (22.77) 23.41 (23.73) 24.21 (25.92)
PARTY 22.63 (24.31) 22.42 (24.52) 22.08 (24.74)
ALLNEWS 0.92 (4.96) 0.94 (6.04)
GOODNEWS 1.11 (4.64)
GROWTH 0.68 (6.26) 0.66 (6.91) 0.68 (8.49)
INFLATION 20.64 (22.26)
PERSON 3.50 (2.61)
WAR 5.85 (2.24)
INTERCEPT 46.80 (19.61) 47.61 (35.31) 48.71 (44.82)
SEE 2.49 2.36 1.98
R2 .91 .91 .93
Adjusted R2 .86 .88 .92
Durbin-Watson 2.65 1.77 1.63
First-order auto-correlation 20.36 20.03 0.16
MAE 1.68 1.49 1.32
Largest error (year) 4.18 (1992) 5.3 (2008) 24.0 (1964)
Elections missed 1916, 1960, 1968, 1992, 2000 1948, 1976, 2008 1948, 1968, 1976
Hit Rate (%) 79 88 88
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models with the previous nine elections and used them to predict 1952 results. Next, we
reestimated the models with the 1916–52 elections and predicted for 1956. We proceeded
in this manner, at every step incorporating one additional election into each model to pre-
dict the one immediately following, through 2008. Displayed in Table 5, the results are
mixed. In the fiscal models, equal weights outperform optimal weights in the MAE or
the Hit Rate. In the case of Fair’s equation, equal weights yield a larger MAE (3.1 versus
2.3), but one more hit.

Table 3 Normalized regressors and equal weights coefficients. Dependent variable: VOTE2
(incumbent’s share of two-party vote); t-values in parentheses; in-sample predictions,

1916–2008 (N 5 24)

Model

Fair’s equation

Fiscal model with

FISCAL FPRIME

All variables 2.49 (9.11) 2.59 (12.12) 2.76 (13.74)
INTERCEPT 52.09 (80.48) 52.09 (102.76) 52.09 (114.02)
SEE 3.17 2.48 2.24
R2 0.79 0.87 0.896
Adjusted R2 0.78 0.87 0.89
Durbin-Watson 2.19 1.35 1.22
Fist-order
auto-correlation

20.096 20.196 0.37

MAE 2.21 1.75 1.59
Largest error
(year)

8.69 (1920) 6.66 (1980) 25.55 (1968)

Elections missed 1988, 1992, 2000 1948, 1976, 1980, 2008 1948, 1976
Hit Rate (%) 88 83 92

Note. All regressors are statistically significant at 0.01 or better and have the same effect on VOTE2, only in the

direction shown in the OLS models displayed in Table 2.

Table 4 Out-of-sample diagnostics: optimal versus equal weights in Fair’s equation and two
versions of the fiscal model; 1916–2008 (N 5 24)

Models MAE
Largest

error (year)
Hit

Rate (%) Elections missed

Optimal weights
Fair’s equation 2.75 9.83 (1920) 71 1916, 1948, 1960, 1968, 1988, 1992, 2000
Fiscal model with
FISCAL

1.99 6.63 (2008) 83 1948, 1976, 1980, 2008

Fiscal model with
FPRIME

1.85 26.32 (1932) 88 1948, 1968, 1976

Equal weights
Fair’s equation 2.55 10.23 (1920) 88 1988, 1992, 2000
Fiscal model with
FISCAL

1.91 6.96 (1980) 83 1948, 1976, 1980, 2008

Fiscal model with
FPRIME

1.74 25.88 (1964) 92 1948, 1976
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As an additional test, we reestimated all models over the 1880–2008 period. Fair includes
data on all his variables for this extended period although, as noted, for forecasting purposes
he estimates his equation starting with the 1916 election. The results, not shown for lack of
space, are consistent with those obtained over the shorter period. Across all models, theMAE
shrinks by between 0.70 and 2.0 points with the one-step-ahead method and around 0.25
points with the out-of-sample method. The Hit Rate rises in Fair’s equation with either
method, as well as in the fiscal model with FPRIME with the one-step-ahead method; it
falls slightly in the latter with the out-of-sample method and in its sister model with FISCAL
with the one-step-ahead method. The largest gains are obtained with Fair’s model.

4 Conclusion

In this research note, we evaluated the idea that equal weights can outperform optimal
weights in regression models with a relatively small ratio of observations to predictors,
as is the case in three presidential elections forecasting models, Fair’s equation and
two versions of the fiscal model. We found that in all three models standardizing the pre-
dictors and restraining the regression coefficients to be equal, without necessarily taking
the value of 1, yield either more in-sample and out-of-sample correct predictions of
whether the incumbents will retain the White House or a smaller absolute error of the
prediction of their share of the two-party vote. These results held over two time periods,
1880–2008 and 1916–2008. In one-step-ahead forecasting, the results are the same in the
fiscal models. In Fair’s equation, estimated over the shorter period, there is a trade-off:
equal weights scored more hits but at the cost of a higher error in the predicted vote.

These findings, then, are generally supportive of the three-decade-old research by
Hogarth and others concerning the value of equal weights for prediction when the N over
which a model is fitted is small. If the findings with Fair’s equation and the fiscal model are
representative, there appears to be little or no downside to the equal weights method in
forecasting presidential elections. This is especially the case if one is more interested
in predicting the winner than in minimizing the error in the margin of victory. Given that
all presidential elections forecasting models are estimated with fewer than 25 observations,
and usually no more than 15, it would be interesting to conduct more experiments with
equal weights in presidential elections forecasting.

Table 5 One-step-ahead diagnostics: optimal versus equal weights in Fair’s equation and two
versions of the fiscal model 1916–2008 (N 5 24)

Models MAE Largest error (Year) Hit Rate (%) Elections miscalled

Optimal weights
Fair’s equation 2.33 25.28 (1952) 75 1960, 1976, 1992, 2000
Fiscal model with
FISCAL

2.26 6.63 (2008) 75 1960, 1976, 1980, 2008

Fiscal model with
FPRIME

1.92 25.05 (1964) 75 1948, 1960, 1968, 1976

Equal weights
Fair’s equation 3.09 28.39 (1952) 81 1988, 1992, 2000
Fiscal model with
FISCAL

2.22 7.56 (1980) 75 1948, 1976, 1980, 2008

Fiscal model with
FPRIME

1.81 26.01 (1964) 81 1948, 1960, 1976
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